A Current Limiting Device for Protection of Electric Power Complexes with Renewable Energy Sources

  • Boris M. ANTONOV
  • Nikolay N. BARANOV
  • Konstantin V. KRYUKOV
Keywords: hybrid power plant, renewable energy sources, short-circuit current limiters, power supply reliability

Abstract

The article addresses an urgent scientific and practical problem aimed at achieving more reliable and trouble-free operation of hybrid energy complexes with renewable energy sources operating both autonomously and in parallel with the electric grid. Possible solutions of protection systems against short-circuit currents and for preventing the occurrence of emergencies depending on the power plant electric power output capacity are considered. A current limiting device for a hybrid electric power complex containing photovoltaic and wind power installations has been developed. The device physical principle consists of using two magnetically coupled reactors, the windings of which are connected in parallel to the load circuit, but oppositely in the winding magnetic flux directions. The magnetic fluxes of the reactors are mutually compensated. The power line current is strictly equally divided between the reactor windings, because the current divider effect manifests itself with exactly such connection of the windings. By using the device, the fault current peak amplitude is limited on a time interval of about 100–120 ms after disconnection of the mains circuit breaker. The steady-state fault current is limited at a level close to the rated current value. The electromagnetic processes occurring in the developed device have been studied on a computer model.

Author Biographies

Boris M. ANTONOV

(Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia) – Leading Researcher, Dr. Sci. (Eng.).

Nikolay N. BARANOV

(Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia) – Chief Researcher, Dr. Sci. (Eng.).

Konstantin V. KRYUKOV

(National Research University «Moscow Power Engineering Institute», Moscow, Russia) – Senior Lecturer of the Electrical Machines, Electrical and Electronic Apparatuses Dept.

References

1. Энергетическая стратегия Российской Федерации на период до 2035 года (Утв. распоряжением Правительства РФ от 9 июня 2020 г. № 1523-р).
2. Annual Energy Outlook 2020 with Ptojections to 2050. U.S. Energy Information Administration Office of Energy Analysis. Washington, DC: U.S. Department of Energy, 2020.
3. Rouch D.A. Electricity power plan to 2050: replacing coal- fired plants with renewable energy plants & better energy efficiency. – Clarendon Policy & Strategy Group, Melbourne, Australia, 2021, Working Paper No. 28.
4. Liserre M., Sauter T., Hung J.Y. Future Energy Systems: Integrating Renewable Energy Sources into the Smart Power Grid Through Industrial Electronics. – IEEE Industrial Electronics Magazine, 2010, vol. 4, No. 1, pp. 18–37, DOI: 10.1109/MIE.2010.935861.
5. Kroposki B., et al. Achieving a 100 % Renewable Grid: Operating Electric Power Systems with Extremely High Levels of Variable Renewable Energyю. – in IEEE Power and Energy Magazine, 2017, vol. 15, No. 2, pp. 61–73, DOI: 10.1109/MPE.2016.2637122.
6. Keller J., Kroposki B. Understanding Fault Characteristics of Inverter-Based Distributed Energy Resources, 2010, DOI:10.2172/971441.
7. Behnke M., Ellis A. Contribution of Photovoltaic Power Generation Systems to AC Short Circuits – a Survey of Current Modeling Practices and Challenges. – IEEE 39th Photovoltaic Specialists Conf. (PVSC), Tampa, 2013, pp. 3128–3133.
8. Shuai Z., et al. Comparative Study of Short-Circuit Fault Characteristics for VSC-Based DC Distribution Networks With Different Distributed Generators. – IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, vol. 7, No. 1, pp. 528–540, DOI: 10.1109/JESTPE.2018.2834542.
9. Meskin M., Domijan A., Grinberg I. Impact of Distributed Generation on the Protection Systems of Distribution Networks: Analysis and Remedies. – IET Gener. Transm. Distrib., 2020, No. 14, pp. 5944–5960, DOI:10.1049/iet-gtd.2019.1652.
10. Антонов Б.М. и др. Гибридная система децентрализованного электроснабжения, реализуемая на основе возобновляемых источников энергии разных видов. – Электричество, 2018, № 1, с. 8–13.
11. Karaliolios P., et al. Overview of Short-Circuit Contribution of Various Distributed Generators on the Distribution Network. – 43rd International Universities Power Engineering Conference, Padua, Italy, 2008, DOI: 10.1109/UPEC.2008.4651553.
12. Coster E.J., et al. Integration Issues of Distributed Generation in Distribution Grids. – in Proceedings of the IEEE, 2011, vol. 99, No. 1, pp. 28–39, DOI: 10.1109/JPROC.2010.2052776.
13. BS EN60898-1:2019. Electrical Accessories, Circuit Breakers for Overcurrent Protection for Household and Similar Installations. Part 1: Circuit-Breakers for A.C. Operation, 2019.
14. Антипов К.М. и др. О проблеме координации уровней токов короткого замыкания в энергосистемах. – Электрические станции. 2005, № 4, с. 19–32.
15. Алексеев Б.А. Полупроводниковые ограничители токов короткого замыкания. – Электро, 2008, № 3, с. 50–56.
16. Paul W., et al. Superconducting Fault Current Limiter Applications, Technical and Economical Benefits, Simulations and Test Results. CIGRE, 13–201, 2000.
17. Samet H., et al. Fault Current Limiter Versus Series Reactor. – IEEE International Conference on Environment and Electrical Engineering and IEEE Industrial and Commercial Power Systems Europe, Italy, 2017, DOI: 10.1109/EEEIC.2017.7977495.
18. Prigmore J., Uzelac N. Fault Current Limiting (FCL) devices and techniques. In: Ito, H. (Ed.): ʻswitching equipment CIGRE green books' – Germany, 2019, pp. 399–432.
19. Okedu K.E., et al. Wind Farms Fault Ride Through Using DFIG with New Protection Scheme. – IEEE Transactions on Sustainable Energy, 2012, No. 3, pp. 242–254.
20. Guo W., et al. Evaluation of the Performance of BTFCLs for Enhancing LVRT Capability of DFIG. – IEEE Transactions on Power Electronics, 2015, No. 30, pp. 3623–3637.
21. Шурупов А.В. и др. Токоограничители на основе быстродействующих коммутаторов. Опыт создания токоограничивающего устройства на напряжении 220 кВ. – Энергия единой сети, 2013, № 2(7), с. 54–65.
22. Пат. RU 132270 U1. Токоограничивающее устройство для высоковольтных линий электропередач / Б.М. Антонов и др., 2013.
23. Пат. RU 88861 U1. Токоограничивающее устройство на базе магнитно-связанных реакторов / Б.М. Антонов, 2009.
---
Работа выполнена при поддержке РФФИ. Грант № 19-08-00018-а.
#
1. Energeticheskaya strategiya Rossiyskoy Federatsii na period do 2035 goda (Utv. rasporyazheniem Pravitel'stva RF ot 9 iyunya 2020 g. № 1523-r) (Energy strategy of the Russian Federation up to 2035 (Approved by the order of the Government of the Russian Federation of June 9, 2020 No. 1523-p)).
2. Annual Energy Outlook 2020 with Ptojections to 2050. U.S. Energy Information Administration Office of Energy Analysis. Washington, DC: U.S. Department of Energy, 2020.
3. Rouch D.A. Electricity power plan to 2050: replacing coal- fired plants with renewable energy plants & better energy efficiency. – Clarendon Policy & Strategy Group, Melbourne, Australia, 2021, Working Paper No. 28.
4. Liserre M., Sauter T., Hung J.Y. Future Energy Systems: Integrating Renewable Energy Sources into the Smart Power Grid Through Industrial Electronics. – IEEE Industrial Electronics Magazine, 2010, vol. 4, No. 1, pp. 18–37, DOI: 10.1109/MIE.2010.935861.
5. Kroposki B., et al. Achieving a 100 % Renewable Grid: Operating Electric Power Systems with Extremely High Levels of Variable Renewable Energyю. – in IEEE Power and Energy Magazine, 2017, vol. 15, No. 2, pp. 61–73, DOI: 10.1109/MPE.2016.2637122.
6. Keller J., Kroposki B. Understanding Fault Characteristics of Inverter-Based Distributed Energy Resources, 2010, DOI:10.2172/971441.
7. Behnke M., Ellis A. Contribution of Photovoltaic Power Generation Systems to AC Short Circuits – a Survey of Current Modeling Practices and Challenges. – IEEE 39th Photovoltaic Specialists Conf. (PVSC), Tampa, 2013, pp. 3128–3133.
8. Shuai Z., et al. Comparative Study of Short-Circuit Fault Characteristics for VSC-Based DC Distribution Networks With Different Distributed Generators. – IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, vol. 7, No. 1, pp. 528–540, DOI: 10.1109/JESTPE.2018.2834542.
9. Meskin M., Domijan A., Grinberg I. Impact of Distributed Generation on the Protection Systems of Distribution Networks: Analysis and Remedies. – IET Gener. Transm. Distrib., 2020, No. 14, pp. 5944–5960, DOI:10.1049/iet-gtd.2019.1652.
10. Antonov B.M., et. al. Elektrichestvo – in Russ. (Electricity), 2018. No. 1, pp. 8–13.
11. Karaliolios P., et al. Overview of Short-Circuit Contribution of Various Distributed Generators on the Distribution Network. – 43rd International Universities Power Engineering Conference, Padua, Italy, 2008, DOI: 10.1109/UPEC.2008.4651553.
12. Coster E.J., et al. Integration Issues of Distributed Generation in Distribution Grids. – in Proceedings of the IEEE, 2011, vol. 99, No. 1, pp. 28–39, DOI: 10.1109/JPROC.2010.2052776.
13. BS EN60898-1:2019. Electrical Accessories, Circuit Breakers for Overcurrent Protection for Household and Similar Installations. Part 1: Circuit-Breakers for A.C. Operation, 2019.
14. Antipov K.M., et. al. Elektricheskie stantsii – in Russ. (Electrical Power Plants), 2005, No. 4, pp. 19–32.
15. Alekseev B.А. Elektro – in Russ. (Electro), 2008, No. 3, pp. 50–56.
16. Paul W., et al. Superconducting Fault Current Limiter Applications, Technical and Economical Benefits, Simulations and Test Results. CIGRE, 13–201, 2000.
17. Samet H., et al. Fault Current Limiter Versus Series Reac-tor. – IEEE International Conference on Environment and Electrical Engineering and IEEE Industrial and Commercial Power Systems Europe, Italy, 2017, DOI: 10.1109/EEEIC.2017.7977495.
18. Prigmore J., Uzelac N. Fault Current Limiting (FCL) devices and techniques. In: Ito, H. (Ed.): ʻswitching equipment CIGRE green books' – Germany, 2019, pp. 399–432.
19. Okedu K.E., et al. Wind Farms Fault Ride Through Using DFIG with New Protection Scheme. – IEEE Transactions on Sustainable Energy, 2012, No. 3, pp. 242–254.
20. Guo W., et al. Evaluation of the Performance of BTFCLs for Enhancing LVRT Capability of DFIG. – IEEE Transactions on Power Electronics, 2015, No. 30, pp. 3623–3637.
21. Shurupov А.V., et al. Energiya edinoy seti – in Russ. (Unified Grid Energy), 2013, No. 2(7), pp. 54–65.
22. Pаt. RU 132270 U1. Tokoogranichivayushchee ustroystvo dlya vysokovol'tnyh liniy elektroperedach (Current Limiting Device for High-Voltage Power Lines) / B.М. Аntоnоv, et al, 2013.
23. Pаt. RU 88861 U1. Tokoogranichivayushchee ustroystvo na baze magnitno-svyazannyh reaktorov (Current Limiting Device Based on Magnetically Coupled Reactors) / B.М. Аntоnоv, 2009.
---
The work was carried out with the support of the RFBR. Grant No. 19-08-00018-a.
Published
2021-07-27
Section
Article