A Brushless Adjustable Excitation Generator

  • Evgeniy N. KOPTYAEV
  • Mark L IVLEV
Keywords: wind turbine, synchronous generator, excitation winding, overall dimensions

Abstract

Wind turbines are further developed toward improving their reliability and efficiency, and reducing maintenance costs during long-term operation. For this purpose, synchronous generators with excitation from permanent magnets are used, the parameters of which determine in many respects the efficiency and dimensions of the power plant as a whole. The article proposes a new design of a brushless synchronous generator with excitation longitudinal with respect to the rotor rotation axis. The generator features a simple design of its rotor poles and double frequency of the secondary winding voltage. The possibility of manufacturing the stator housing from cheap plastic or similar non-magnetic materials is noted, due to which a reduction in the generator mass and cost can be achieved; such generator can find use mainly in small and medium capacity power plants. To close the rotor excitation magnetic flux, longitudinal magnetic cores with coils on them are installed in the slots of the non-magnetic stator housing. This makes it possible to improve heat removal from the secondary winding and simplify the assembly. Smooth adjustment of the output voltage in a wide range of rotation speeds is possible. The results of modeling the magnetic field in the air gap between the stator and rotor and the output voltage waveform for the basic magnetic system configuration are presented.

Author Biographies

Evgeniy N. KOPTYAEV

(Northern (Arctic) Federal University named after M.V. Lomonosov, Arkhangelsk, Russia) – Senior Lecturer of the Ship Power Engineering and Automation Dept.

Mark L IVLEV

(Northern (Arctic) Federal University named after M.V. Lomonosov, Arkhangelsk, Russia) – Docent of the Ship Power Engineering and Automation Dept., Cand. Sci. (Eng.).

References

1. Елистратов В.В. Возобновляемая энергетика. СПб.: Изд-во политехн. ун-та, 2016, 424 с.
2. Мартьянов А.С. Исследование алгоритмов управления и разработка контроллера ветроэнергетической установки с вертикальной осью вращения: дис. … канд. техн. наук. Челябинск: 2016, 174 с.
3. Yuan X., et al. DC-link Voltage Control of a Full Power Converter for Wind Generator Operating in Weak-Grid Systems. – IEEE Transactions on Power Electronics, 2009, vol. 24, No. 9, pp. 2178–2192, DOI:10.1109/TPEL.2009.2022082.
4. Bingyi Z., et al. A Switchable Cascaded Multi-DC-Branch for Permanent Magnet Synchronous Generator in Wide Speed Range on Wind Energy Conversion System. – IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS), 2017, DOI:10.1109/PEDS.2017.8289210.
5. Furlani E.P. Permanent Magnet and Electromechanical Devices. San Diego: Academic press, 2001, 537 p.
6. Gieras J., Wing M. Permanent Magnet Motor Technology. N.Y.: Marcel Dekker, 2002, 611 p.
7. Hanselman D.C. Brushless Permanent-Magnet Motor Design. N.Y.: McGraw-Hill, 1994, 195 p.
8. Labidi Z.R., Schulte H., Mami A. Modeling and Optimal Torque Control of Small Wind Turbines with Permanent Magnet Synchronous Generators. – International Conference on Green Energy Conversion Systems, 2017, DOI:10.1109/GECS.2017.8066149.
9. Maslov A.E., Mytsyk G.S. Voltage-Stabilized Brushless Permanent Magnets Generator with Reversible Voltage Booster Channel. – International Conference on Industrial Engineering, Applications and Manufacturing, Sochi, Russia, 2019, DOI:10.1109/ICIEAM.2019.8743079.
10. Godoy R.B., et al. A HPF AC-AC Converter for Permanent Magnet Generator Applications. – SPEEDAM, Pisa, Italy, 2010, DOI:10.1109/SPEEDAM.2010.5542286.
11. Shyam B., Raj A.B., Thomas P.C. A Novel Wind Energy Conversion System with Power Quality Improvement Features. – ISGT2011, India, 2011, DOI:10.1109/ISET-India.2011.6145360.
12. Singh A., Benzaquen J., Mirafzal B. Current Source Generator–Converter Topology for Direct-Drive Wind Turbines. – IEEE Transactions on Industry Applications, 2017, vol. 54, iss. 2, pp. 1663–1670.
13. Bharanikumar R., et al. Steady State Analysis of Wind Turbine Driven PM Generator with Power Converters. – First International Conference on Emerging Trends in Engineering and Technology, India, 2008, DOI:10.1109/ICETET.2008.135.
14. Saleh S.A.M. Testing the Performance of a Resolution-Level MPPT Controller for PMG-Based Wind Energy Conversion Systems. – IEEE Transactions on Industry Applications, 2017, vol. 53, iss.3, pp. 2526–540.
15. Xu Z., et al. Unified Control for the Permanent Magnet Generator and Rectifier System. – 26th Annual IEEE Applied Power Electronics Conference and Exposition, Fort Worth, TX, USA, 2011, DOI:10.1109/APEC.2011.5744853.
16. Otero-Verdejo C., et al. Grid-Connected Wind Microinverter for a PMG Based Savonious–Gorlov Turbine. – International Conference on New Concepts in Smart Cities: Fostering Public and Private Alliances (SmartMILE), Spain, 2013, DOI:10.1109/SmartMILE.2013.6708184.
17. Saleh S.A., Ahshan R. Resolution-Level-Controlled WM Inverter for PMG-Based Wind Energy Conversion System. – IEEE Transactions on Industry Applications, 2012, vol. 48, iss. 2, pp.750–763.
18. Tsuda T., et al. Effects of the Built-in Permanent Magnet Rotor on the Equivalent Circuit Parameters of a Permanent Magnet Induction Generator. – IEEE Transactions on Energy Conversion, 2007, vol. 22, iss. 3, pp. 798–799.
19. Nihonyanagi A., Takemoto M., Ogasawara S. Examination of an Axial-Gap Generator with Ferrite Permanent Magnets Realizing Miniaturization and High Output Power of Engine Generators. – IEEE International Electric Machines & Drives Conference, ID, USA, 2015, DOI:10.1109/IEMDC.2015.7409075.
20. Yang X., Patterson D., Hudgins J. Permanent Magnet Generator Design and Control for Large Wind Turbines. – IEEE Power Electronics and Machines in Wind Applications, CO, USA, 2012, DOI:10.1109/PEMWA.2012.6316367.
21. Virlan B., et al. Pole Magnets Segmentation Effect on Permanent Magnet Synchronous Generators. – International Conference on Electromechanical and Power Systems (SIELMEN), Romania, 2017, DOI:10.1109/SIELMEN.2017.8123318.
22. Muyeen S.M., et al. Transient Stability Analysis of Permanent Magnet Variable Speed Synchronous Wind Generator. – International Conference on Electrical Machines and Systems (ICEMS), South Korea, 2007, DOI:10.1109/ICEMS.2007.4412242.
23. Сковпень С.М., Коновалова А.И., Коптяев Е.Н. Синхронный генератор с продольным возбуждением от постоянного магнита. – Научно-технические ведомости Севмашвтуза, 2020, № 1, c. 15–19.
24. Пат. RU 197778 U1. Генератор с продольным возбуждением / Е.Н. Коптяев, 2020.
25. Пат. RU 198522 U1. Улучшенный генератор с продольным возбуждением / Е.Н. Коптяев, 2020.
26. Демирчян К.С. и др. Теоретические основы электротехники: т.1. СПб.: Питер, 2003, 463 с.
#
1. Elistratov V.V. Vozobnovlyaemaya energetika (Renewable Energy). SPb.: Izd-vo politekhn. un-ta, 2016, 424 p.
2. Mart'yanov А.S. Issledovanie algoritmov upravleniya i razrabotka kontrollera vetroenergeticheskoy ustanovki s vertikal'noy os'yu vrashcheniya: dis. … kand. tekhn. nauk (Control Algorithms Research and Development of a Controller of a Wind Turbine with a Vertical Axis of Rotation: dis. ... Cand. Sci. (Eng.)). Chelyabinsk: 2016, 174 p.
3. Yuan X., et al. DC-link Voltage Control of a Full Power Converter for Wind Generator Operating in Weak-Grid Systems. – IEEE Transactions on Power Electronics, 2009, vol. 24, No. 9, pp. 2178–2192, DOI:10.1109/TPEL.2009.2022082.
4. Bingyi Z., et al. A Switchable Cascaded Multi-DC-Branch for Permanent Magnet Synchronous Generator in Wide Speed Range on Wind Energy Conversion System. – IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS), 2017, DOI:10.1109/PEDS.2017.8289210.
5. Furlani E.P. Permanent Magnet and Electromechanical Devices. San Diego: Academic press, 2001, 537 p.
6. Gieras J., Wing M. Permanent Magnet Motor Technology. N.Y.: Marcel Dekker, 2002, 611 p.
7. Hanselman D.C. Brushless Permanent-Magnet Motor Design. N.Y.: McGraw-Hill, 1994, 195 p.
8. Labidi Z.R., Schulte H., Mami A. Modeling and Optimal Torque Control of Small Wind Turbines with Permanent Magnet Synchronous Generators. – International Conference on Green Energy Conversion Systems, 2017, DOI:10.1109/GECS.2017.8066149.
9. Maslov A.E., Mytsyk G.S. Voltage-Stabilized Brushless Permanent Magnets Generator with Reversible Voltage Booster Channel. – International Conference on Industrial Engineering, Applications and Manufacturing, Sochi, Russia, 2019, DOI:10.1109/ICIEAM.2019.8743079.
10. Godoy R.B., et al. A HPF AC-AC Converter for Permanent Magnet Generator Applications. – SPEEDAM, Pisa, Italy, 2010, DOI:10.1109/SPEEDAM.2010.5542286.
11. Shyam B., Raj A.B., Thomas P.C. A Novel Wind Energy Conversion System with Power Quality Improvement Features. – ISGT2011, India, 2011, DOI:10.1109/ISET-India.2011.6145360.
12. Singh A., Benzaquen J., Mirafzal B. Current Source Generator–Converter Topology for Direct-Drive Wind Turbines. – IEEE Transactions on Industry Applications, 2017, vol. 54, iss. 2, pp. 1663–1670.
13. Bharanikumar R., et al. Steady State Analysis of Wind Turbine Driven PM Generator with Power Converters. – First International Conference on Emerging Trends in Engineering and Technology, India, 2008, DOI:10.1109/ICETET.2008.135.
14. Saleh S.A.M. Testing the Performance of a Resolution-Level MPPT Controller for PMG-Based Wind Energy Conversion Systems. – IEEE Transactions on Industry Applications, 2017, vol. 53, iss.3, pp. 2526–540.
15. Xu Z., et al. Unified Control for the Permanent Magnet Generator and Rectifier System. – 26th Annual IEEE Applied Power Electronics Conference and Exposition, Fort Worth, TX, USA, 2011, DOI:10.1109/APEC.2011.5744853.
16. Otero-Verdejo C., et al. Grid-Connected Wind Microinverter for a PMG Based Savonious–Gorlov Turbine. – International Conference on New Concepts in Smart Cities: Fostering Public and Private Alliances (SmartMILE), Spain, 2013, DOI:10.1109/SmartMILE.2013.6708184.
17. Saleh S.A., Ahshan R. Resolution-Level-Controlled WM Inverter for PMG-Based Wind Energy Conversion System. – IEEE Transactions on Industry Applications, 2012, vol. 48, iss. 2, pp.750–763.
18. Tsuda T., et al. Effects of the Built-in Permanent Magnet Rotor on the Equivalent Circuit Parameters of a Permanent Magnet Induction Generator. – IEEE Transactions on Energy Conversion, 2007, vol. 22, iss. 3, pp. 798–799.
19. Nihonyanagi A., Takemoto M., Ogasawara S. Examination of an Axial-Gap Generator with Ferrite Permanent Magnets Realizing Miniaturization and High Output Power of Engine Generators. – IEEE International Electric Machines & Drives Conference, ID, USA, 2015, DOI:10.1109/IEMDC.2015.7409075.
20. Yang X., Patterson D., Hudgins J. Permanent Magnet Generator Design and Control for Large Wind Turbines. – IEEE Power Electronics and Machines in Wind Applications, CO, USA, 2012, DOI:10.1109/PEMWA.2012.6316367.
21. Virlan B., et al. Pole Magnets Segmentation Effect on Permanent Magnet Synchronous Generators. – International Conference on Electromechanical and Power Systems (SIELMEN), Romania, 2017, DOI:10.1109/SIELMEN.2017.8123318.
22. Muyeen S.M., et al. Transient Stability Analysis of Permanent Magnet Variable Speed Synchronous Wind Generator. – International Conference on Electrical Machines and Systems (ICEMS), South Korea, 2007, DOI:10.1109/ICEMS.2007.4412242.
23. Skovpen' S.M., Konovalova A.I., Koptyaev E.N. Nauchno-tekhnicheskie vedomosti Sevmashvtuza – in Russ. (Scientific and Technical Bulletin of Sevmashvtuz), 2020, No. 1, pp. 15–19.
24. Pat. RU 197778 U1. Generator s prodol'nym vozbuzhdeniem (Generator with Longitudinal Excitation) / Е.N. Koptyaev, 2020.
25. Pat. RU 198522 U1. Uluchshennyy generator s prodol'nym vozbuzhdeniem (Improved Generator with Longitudinal Excitation) / Е.N. Koptyaev, 2020.
26. Demirchyan К.S., et al. Teoreticheskie osnovy elektrotekhniki (Theoretical Foundations of Electrical Engineering): vol.1. SPb.: Piter, 2003, 463 p.
Published
2021-09-23
Section
Article