Artificial Neural Network Training Algorithm for Factor-Based Prediction of Electricity Consumption in the Household Sector

  • Saidjon Sh. TAVAROV
Keywords: predicted electricity consumption, factors, algorithm, artificial neural network

Abstract

An analysis of the known methods for forecasting electricity consumption in urban distribution electric networks has shown that they are all based on the availability of sources of both electric and thermal energy. Reduction or complete absence of heat sources leads to significant forecast errors, which entails a drop in the energy efficiency of urban electrical networks and degraded reliability of power supply system individual components. Theoretical, computer, and neural network models that help achieve more accurate forecasting of electricity consumption in the household sector are proposed. Based on the developed mathematical model and taking into account the factor coefficients obtained for 2020 for nine cities of the Republic of Tajikistan, monthly values of the coefficient characterizing the terrain conditions were calculated. The results obtained using the proposed mathematical model were compared with the data of computer and neural network models. A method that helps obtain more accurate forecasting of electricity consumption in the household sector is proposed. To automate the monitoring and control of electricity generated by renewable energy sources, an algorithm for training an artificial neural network for factor-based forecasting of electricity consumption is proposed, the use of which will help improve the forecasting accuracy owing to the possibility of constantly training the neural network. The algorithm efficiency is confirmed by good agreement between the results obtained both using the proposed models and based on the readings of electricity meters.

Author Biography

Saidjon Sh. TAVAROV

(Tajik Technical University named after Academician M.S. Osimi, Dushanbe, Tajikistan) – Associate Professor of the Power Supply Dept., Cand. Sci. (Eng.).

References

1. Макоклюев Б.И. и др. Краткосрочное прогнозирование электропотребления энергосистем. – Электрические станции, 2018, № 4, с. 24–35.
2. Макоклюев Б.И. и др. Оперативная коррекция графиков потребления электрической мощности в цикле планирования балансирующего рынка. – Электрические станции, 2019, № 5, с. 36–44.
3. Репкина Н.Г. Исследование факторов, влияющих на точность прогнозирования суточного электропотребления. – Известия высших учебных заведений. Электромеханика, 2015, № 2, с. 41–43.
4. Валеев Г.С., Дзюба М.А., Валеев Р.Г. Моделирование суточных графиков нагрузок участков распределительных сетей напряжением 6–10 кВ городов и населенных пунктов в условиях ограниченного объема исходной информации. – Вестник ЮУрГУ. Серия Энергетика, 2016, т. 16, № 2, с. 23–29.
5. Карпенко С.М., Карпенко Н.В. Эконометрическое моделирование энергопотребления с учетом влияния производственных факторов. – Энергобезопасность и энергосбережение, 2020, № 1, с. 14–17.
6. Карпенко С.М., Карпенко Н.В. Анализ динамики и прогнозирование электропотребления на основе эконометрического моделирования. – Энергобезопасность и энергосбережение, 2020, № 2, с. 20–25.
7. Таваров С.Ш. Рекомендации норм электропотребления для городов на основе разработанного метода прогнозирования на примере Республики Таджикистан. – Энергобезопасность и энергосбережение, 2021, № 1, с. 32–39.
8. Таваров С.Ш. Удельное электропотребление бытового сектора с учётом температуры окружающего воздуха и территориального расположения Республики Таджикистан. – Промышленная энергетика, 2019, № 7, с.19–22.
9. Таваров С.Ш. Метод прогнозирования электропотребления бытовыми потребителями в условиях Республики Таджикистан. – Вестник ЮУрГУ. Серия «Энергетика», 2020, т. 20, № 2. с. 28–35.
10. Issi F., Kaplan O. The Determination of Load Profiles and Power Consumptions of Home Appliances. – Energies, 2018, 11(3), 607, DOI: 10.3390/en11030607.
11. Angrisani L., et al. Smart Power Meters in Augmented Reality Environment for Electricity Consumption Awareness. – Energies, 2018, 11(9), 2303, DOI:10.3390/en11092303.
12. Yan K., et al. Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy. – Energies, 2018, 11(11), 3089, DOI:10.3390/en11113089.
13. Vojtovic S., Stundziene A., Kontautiene R. The Impact of Socio-Economic Indicators on Sustainable Consumption of Domestic Electricity in Lithuania. – Sustainability, 2018, 10(2), 162, DOI: 10.3390/su10020162.
14. Ziel F. Load Nowcasting: Predicting Actuals with Limited Data. – Energies, 2020, 13(6), 1443, DOI: 10.3390/en13061443.
15. Naz A., et al. and Khursheed A. Short-Term Electric Load and Price Forecasting Using Enhanced Extreme Learning Machine Optimization in Smart Grids. – Energies, 2019, 12(5), 866, DOI: 10.3390/en12050866.
16. To W.M., et al. Modeling of Monthly Residential and Commercial Electricity Consumption Using Nonlinear Seasonal Models – The Case of Hong Kong. – Energies, 2017, 10(7), 885, DOI: 10.3390/en10070885.
17. Хомутов С.О.,Серебряков Н.А. Применение сверточной нейронной сети для повышения точности краткосрочного прогнозирования электропотребления электротехнического комплекса районной электрической сети. – Актуальные вопросы энергетики, 2020, т. 2, № 1, с. 44–47.
18. Tavarov S.Sh., Sidorov A.I., Kalegina Y.V. Model and Algorithm of Electricity Consumption Management for Household Consumers in the Republic of Tajikistan. – Mathematical Modelling of Engineering Problems, 2020, vol. 7, No. 4, pp. 520–526, DOI:10.18280/mmep.070403.
19. Алексеева И.Ю., Ведерников А.С., Скрипачев М.О. Прогнозирование электропотребления с использованием метода искусственных нейронных сетей. – Вестник Самарского государственного технического университета. Серия: Технические науки, 2010, № 2 (27), с. 135–138.
20. Староверов Б.А., Гнатюк Б.А. Определение наиболее перспективных нейронных сетей и способов их обучения для прогнозирования электропотребления. – Вестник Ивановского государственного энергетического университета, 2015, № 6, с. 59–64.
21. Mokhov V.G., Tsimbol V.I. Electrical Energy Consumption Prediction of the Federal District of Russia on the Based of the Recurrent Neural Network. – Journal of Computational and Engineering Mathematics, 2018, vol. 5, No. 2, pp. 3–15.
22. Симонов Н., Ивенев Н. Опыт и перспективы применения искусственных нейронных сетей в электроэнергетике. – Электроэнергия. Передача и распределение, 2019, № S4 (15), с. 42–48.
23. Солуянов Ю.И. и др. Актуализация нормативных значений удельной электрической нагрузки многоквартирных домов в Республике Татарстан. – Электричество, 2021, № 6, с. 62–71.
#
1. Makoklyuev B.I., et al. Elektricheskie stantsii – in Russ. (Electrical power plants), 2018, No. 4, pp. 24–35.
2. Makoklyuev B.I., et al. Elektricheskie stantsii – in Russ. (Electrical power plants), 2019, No. 5, pp. 36–44.
3. Repkina N.G. Izvestiya vysshih uchebnyh zavedeniy. Elekt-romekhanika – in Russ. (News of Higher Educational Institutions. Electromechanics), 2015, No. 2, pp. 41–43.
4. Valeev G.S., Dzyuba M.A., Valeev R.G. Vestnik YuUrGU. Seriya Energetika – in Russ. (Bulletin of SUSU. Energy Series), 2016, vol. 16, No. 2, pp. 23–29.
5. Karpenko S.M., Karpenko N.V. Energobezopasnost' i energo-sberezhenie – in Russ. (Energy security and energy conservation), 2020, No. 1, pp. 14–17.
6. Karpenko S.M., Karpenko N.V. Energobezopasnost' i energo-sberezhenie – in Russ. (Energy security and energy conservation), 2020, No. 2, pp. 20–25.
7. Tavarov S.Sh. Energobezopasnost' i energosberezhenie – in Russ. (Energy security and energy conservation), 2021, No. 1, pp. 32–39.
8. Tavarov S.Sh. Promyshlennaya energetika – in Russ. (Industrial Power Engineering), 2019, No. 7, pp.19–22.
9. Tavarov S.Sh. Vestnik YuUrGU. Seriya Energetika – in Russ. (Bulletin of SUSU. Energy Series), 2020, vol. 20, No. 2. pp. 28–35.
10. Issi F., Kaplan O. The Determination of Load Profiles and Power Consumptions of Home Appliances. – Energies, 2018, 11(3), 607, DOI: 10.3390/en11030607.
11. Angrisani L., et al. Smart Power Meters in Augmented Reality Environment for Electricity Consumption Awareness. – Energies, 2018, 11(9), 2303, DOI:10.3390/en11092303.
12. Yan K., et al. Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy. – Energies, 2018, 11(11), 3089, DOI:10.3390/en11113089.
13. Vojtovic S., Stundziene A., Kontautiene R. The Impact of Socio-Economic Indicators on Sustainable Consumption of Domestic Electricity in Lithuania. – Sustainability, 2018, 10(2), 162, DOI: 10.3390/su10020162.
14. Ziel F. Load Nowcasting: Predicting Actuals with Limited Data. – Energies, 2020, 13(6), 1443, DOI: 10.3390/en13061443.
15. Naz A., et al. and Khursheed A. Short-Term Electric Load and Price Forecasting Using Enhanced Extreme Learning Machine Optimization in Smart Grids. – Energies, 2019, 12(5), 866, DOI: 10.3390/en12050866.
16. To W.M., et al. Modeling of Monthly Residential and Commercial Electricity Consumption Using Nonlinear Seasonal Mo-dels – The Case of Hong Kong. – Energies, 2017, 10(7), 885, DOI:10. 3390/en10070885.
17. Homutov S.O.,Serebryakov N.A. Aktual'nye voprosy energe-tiki – in Russ. (Current Energy Issues), 2020, vol. 2, No. 1, pp. 44–47.
18. Tavarov S.Sh., Sidorov A.I., Kalegina Y.V. Model and Algorithm of Electricity Consumption Management for Household Consumers in the Republic of Tajikistan. – Mathematical Modelling of Engineering Problems, 2020, vol. 7, No. 4, pp. 520–526, DOI:10.18280/mmep.070403.
19. Alekseeva I.YU., Vedernikov A.S., Skripachev М.О. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki – in Russ. (Bulletin of Samara State Technical University. Series: Technical Sciences), 2010, No. 2 (27), pp. 135–138.
20. Staroverov B.A., Gnatyuk B.А. Vestnik Ivanovskogo gosudarstvennogo energeticheskogo universiteta – in Russ.( Bulletin of the Ivanovo State Power Engineering University), 2015, No. 6, pp. 59–64.
21. Mokhov V.G., Tsimbol V.I. Electrical Energy Consumption Prediction of the Federal District of Russia on the Based of the Recurrent Neural Network. – Journal of Computational and Engineering Mathematics, 2018, vol. 5, No. 2, pp. 3–15.
22. Simonov N., Ivenev N. Elektroenergiya. Peredacha i raspredelenie – in Russ. (Electricity. Transmission and distribution), 2019, No. S4 (15), pp. 42–48.
23. Soluyanov Yu.I., et al. Elektrichestvo – in Russ. (Electricity), 2021, No. 6, pp. 62–71.
Published
2021-08-12
Section
Article