An Approach to Designing the Stator Windings of High-Capacity Wind Generators

  • Viktor N. ANTIPOV
  • Andrey D. GROZOV
  • Anna V. IVANOVA
Keywords: synchronous superconducting wind generators, concentrated windings, distributed windings, short-circuit current

Abstract

The capacity of a single offshore windfarm turbine has by now reached 10 MW, and its further growth is possible by making a shift for using superconducting synchronous generators. The article considers the factors that determine the choice of classical distributed and concentrated stator windings in designing high capacity superconducting wind generators. A 10 MW, 3300 V, 10 rpm superconducting wind generator with an excitation winding made of high temperature superconducting material Bi-2223 with ferromagnetic stator and rotor is studied. The stator volume and superconducting wire length were adopted as design selection criteria. It is shown that in the range of pole pair numbers 2p = 32-40, the use of a distributed two-layer winding has limitations in regard of the generator operation stability (the short-circuit current is less than the nominal value), and the use of concentrated windings has limitations due to a significant value of the differential leakage component. It has been found that for a distributed winding in the specified range of pole pair numbers, almost equivalent versions can be obtained with the stator volume equal to 78 m3 and superconductor wire length equal to 16 km. For a concentrated winding, it is preferable to choose a single-layer winding with the embodiment conditions Z = 12 + 6k, 2p = Z – 2, k = 0, l, 2,...; however, the obtained indicators are inferior to those in the case of using a classical distributed two-layer winding.

Author Biographies

Viktor N. ANTIPOV

(I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences, St. Petersburg, Russia) – Leading Researcher, Dr. Sci. (Eng.)

Andrey D. GROZOV

(I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences, St. Petersburg, Russia) – Research Associate.

Anna V. IVANOVA

(I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences, St. Petersburg, Russia) – Senior Researcher, Cand. Sci. (Phys.-Math.).

References

1. AMSC Sea Titan 10 MW Wind Turbine [Электрон. ресурс], URL:https://www.renugen.co.uk/amsc-seatitan-10mw-wind-turbine (дата обращения 27.12.2021).
2. Snitchier G., et al. 10 MW Class Superconductor Wind Turbine Generators. – IEEE Transactions on Applied Superconductivity, 2011, vol. 21. No. 3, pp. 1089–1092.
3. Fair R., et al. Superconductivity for Large-Scale Wind Turbines. – Applied Superconductivity Conference, Portland, Oregon, 2012.
4. Kalsi S.S. Superconducting Wind Turbine Generator Employing MgB2 Windings Both on Rotor and Stator. – IEEE Transactions on Applied Superconductivity, 2014, vol. 24. No. 1, DOI: 10.1109/TASC. 2013.2291275.
5. Liu D., et al. Potential of Partially Superconducting Generators for Large Direct-Drive Wind Turbines. – IEEE Transactions on Applied Superconductivity, 2017, vol. 27, No. 5, DOI: 10.1109/TASC.2017. 2707661.
6. Fukui S., et al. Study of 10 MW-Class Wind Turbine Synchronous Generators with HTS Field Windings. – IEEE Transactions on Applied Superconductivity, 2011, 21(3), DOI:10.1109/TASC.2010.2090115.
7. Terao Y., Sekino M., Ohsaki H. Electromagnetic design of 10 MW class fully superconducting wind turbine generators. – IEEE Transactions on Applied Superconductivity, 2012, 22(3), DOI:10.1109/TASC.2011.2177628.
8. Wang J., et al. Design of a Superconducting Synchronous Generator with LTS Field Windings for 12 MW Offshore Direct-Drive Wind Turbines. – IEEE Transactions on Industrial Electronics, 2015, 63(3), DOI: 10.1109/TIE.2015.2415758.
9. Liang Y., Rotaru M.D., Sykulski J.R. Electromagnetic Simulation of a Fully Superconducting 10-MW-Classs Wind Turbine Generator. – IEEE Transactions Applied Superconductivity, 2013, 23 (6), DOI: 10.1109/TASC.2013.2277778.
10. Kim J.H., Kim H.M. Electromagnetic Design of 10 MW Class Superconducting Wind Turbine Using 2G HTS Wire. – Progress in Superconductivity and Cryogenics, 2013, vol. 15, No. 3, pp. 29–34, DOI:10.9714/psac.2013.15.3.029.
11. Sung H.-J., et al. Practical Design of a 10 MW Superconducting Wind Power Generator Considering Weight. – IEEE Transactions on Applied Superconductivity, 2013, vol. 23, No. 3, DOI: 10.1109/TASC. 2013.2245175.
12. Maki N. Design Study of High-Temperature Superconducting Generators for Wind Power Systems. – IOP Publishing Journal of Physics: Conference Series, 2008, vol. 97, DOI:10.1088/1742-6596/97/ 1/012155.
13. Hoang T.-K., et al. Design of a 20-MW Fully Superconducting Wind Turbine Generator to Minimize the Levelized Cost of Energy. – IEEE Transactions on Applied Superconductivity, 2018, vol. 28, No. 4, DOI: 10.1109/TASC.2018.2810309.
14. Keysan O., Mueller M. A Modular and Cost-Effective Superconducting Generator Design for Offshore Wind Turbines Institute for Energy Systems. – Superconductor Science and Technology, 2015, vol. 28, DOI: 10.1088/0953-2048/28/3/034004.
15. Антипов В.Н., Грозов А.Д., Иванова А.В. Сверхпроводниковые ветрогенераторы мощностью 10 МВт и более (обзор зарубежных публикаций). – Электричество, 2020, № 10, с. 59–67.
16. Pat. US20160380516 A1. Superconducting Generators and Motors and Methods for Employing Same / M.J. Tomsic, L Long, 2016.
17. Антипов В.Н., Грозов А.Д., Иванова А.В. Выбор конструкции электрического ветрогенератора мегаваттного диапазона мощности. – Электричество, 2020, № 4, с. 56–63.
18. Антипов В.Н., Грозов А.Д., Иванова А.В. Применение сосредоточенных обмоток для мощных синхронных ветрогенераторов. – Электричество, 2021, № 4, с. 50–57.
19. Вольдек А.И. Рассеяние по коронкам зубцов в электрических машинах. – Вестник электропромышленности, 1961, № 1, с. 60–62.
---
Работа выполнена в рамках гос. задания ИХС РАН (№ гос. регистрации темы АААА-А19-119022290086-4)
#
1. AMSC Sea Titan 10 MW Wind Turbine [Electron. resource], URL:https://www.renugen.co.uk/amsc-seatitan-10mw-wind-turbine (Date of appeal 27.12.2021).
2. Snitchier G., et al. 10 MW Class Superconductor Wind Turbine Generators. – IEEE Transactions on Applied Superconductivity, 2011, vol. 21. No. 3, pp. 1089–1092.
3. Fair R., et al. Superconductivity for Large-Scale Wind Turbines. – Applied Superconductivity Conference, Portland, Oregon, 2012.
4. Kalsi S.S. Superconducting Wind Turbine Generator Employing MgB2 Windings Both on Rotor and Stator. – IEEE Transactions on Applied Superconductivity, 2014, vol. 24. No. 1, DOI: 10.1109/TASC.2013.2291275.
5. Liu D., et al. Potential of Partially Superconducting Generators for Large Direct-Drive Wind Turbines. – IEEE Transactions on Applied Superconductivity, 2017, vol. 27, No. 5, DOI: 10.1109/TASC.2017.2707661.
6. Fukui S., et al. Study of 10 MW-Class Wind Turbine Synchronous Generators with HTS Field Windings. – IEEE Transactions on Applied Superconductivity, 2011, 21(3), DOI:10.1109/TASC.2010.2090115.
7. Terao Y., Sekino M., Ohsaki H. Electromagnetic design of 10 MW class fully superconducting wind turbine generators. – IEEE Transactions on Applied Superconductivity, 2012, 22(3), DOI:10.1109/TASC.2011.2177628.
8. Wang J., et al. Design of a Superconducting Synchronous Generator with LTS Field Windings for 12 MW Offshore Direct-Drive Wind Turbines. – IEEE Transactions on Industrial Electronics, 2015, 63(3), DOI: 10.1109/TIE.2015.2415758.
9. Liang Y., Rotaru M.D., Sykulski J.R. Electromagnetic Simulation of a Fully Superconducting 10-MW-Classs Wind Turbine Generator. – IEEE Transactions Applied Superconductivity, 2013, 23(6), DOI: 10.1109/TASC.2013.2277778.
10. Kim J.H., Kim H.M. Electromagnetic Design of 10 MW Class Superconducting Wind Turbine Using 2G HTS Wire. – Progress in Superconductivity and Cryogenics, 2013, vol. 15, No. 3, pp. 29–34, DOI:10.9714/psac.2013.15.3.029.
11. Sung H.-J., et al. Practical Design of a 10 MW Superconducting Wind Power Generator Considering Weight. – IEEE Transactions on Applied Superconductivity, 2013, vol. 23, No. 3, DOI: 10.1109/TASC.2013.2245175.
12. Maki N. Design Study of High-Temperature Superconducting Generators for Wind Power Systems. – IOP Publishing Journal of Physics: Conference Series, 2008, vol. 97, DOI:10.1088/1742-6596/97/1/012155.
13. Hoang T.-K., et al. Design of a 20-MW Fully Superconducting Wind Turbine Generator to Minimize the Levelized Cost of Energy. – IEEE Transactions on Applied Superconductivity, 2018, vol. 28, No. 4, DOI: 10.1109/TASC.2018.2810309.
14. Keysan O., Mueller M. A Modular and Cost-Effective Superconducting Generator Design for Offshore Wind Turbines Institute for Energy Systems. – Superconductor Science and Technology, 2015, vol. 28, DOI: 10.1088/0953-2048/28/3/034004.
15. Antipov V.N., Grozov A.D., Ivanova A.V. Elektrichestvo – in Russ. (Electricity), 2020, No. 10, pp. 59–67.
16. Pat. US20160380516 A1. Superconducting Generators and Motors and Methods for Employing Same / M.J. Tomsic, L Long, 2016.
17. Antipov V.N., Grozov A.D., Ivanova A.V. Elektrichestvo – in Russ. (Electricity), 2020, No. 4, pp. 56–63.
18. Antipov V.N., Grozov A.D., Ivanova A.V. Elektrichestvo – in Russ. (Electricity), 2021, No. 4, pp. 50–57.
19. Vol'dek А.I. Vestnik elektropromyshlennosti– in Russ. (Bulletin of the Electrical Industry), 1961, No. 1, pp. 60–62.
---
The work was carried out within the framework of the state task of the IHS RAS (State registration number of the topic AAAA19-119022290086-4)
Published
2021-12-22
Section
Article