Presowing Winter Wheat Seed Treatment in the Pulsed Surface Dielectric Barrier Discharge Field
Abstract
The results from studying indirect treatment of winter wheat seeds in the field of pulsed surface dielectric barrier discharge (SDBD), as well as their treatment in a pulsed electric field (PEF) in different treatment modes and with different treatment duration are presented. The applied pulsed voltage source had capabilities to dose the grain treatment energy by setting the exact number of pulses applied to the electrode system. A weak stimulating effect of SDBD and PEF treatments on individual plant indicators in different modes is shown. A comparison of the seed root length to sprout length ratio by the third day of seed germination demonstrates the best ratio for the PEF mode with a treatment duration of 6.67 s and 0.7 s for SDBD. The newly obtained treatment results are compared with those obtained earlier under the grain treatment conditions in a similar electrode system with a sinusoidal voltage. The comparison results suggest that for achieving better efficiency of combined treatment by electric field and discharge products, a certain ratio of SDBD energy (its intensity) and electric field energy in the gap with the seeds must be kept. To this end, it is necessary to find the optimal parameters of the applied voltage that will ensure the maximum treatment efficiency both in terms of plant germination and minimizing the energy consumption.
References
2. Jayaram S.H. Sterilization of Liquid Foods by Pulsed Electric Fields. – IEEE Electrical Insulation Magazine, 2000, vol. 16, No. 6, pp. 17–25, DOI: 10.1109/57.887601.
3. Evrendilek G., et al. Development of Pulsed Electric Fields Treatment Unit to Treat Wheat Grains: Improvement of Seed Vigour and Stress Tolerance. – Computers and Electronics in Agriculture, 2021, vol. 185, 106129, DOI:10.1016/j.compag.2021.106129.
4. Ahmed Z., et al. Impact of Pulsed Electric Field Treatments on the Growth Parameters of Wheat Seeds and Nutritional Properties of Their Wheat Plantlets Juice. – Food Science and Nutrition, 2020, vol. 8, No. 5, pp. 2490–2500, DOI:10.1002/fsn3.1540.
5. Васильев С.И. и др. Электрофизическая предпосевная обработка семян как способ интенсификации процессов в растениеводческой отрасли сельского хозяйства. Кинель: СГАУ, 2020, 243 с.
6. Adhikari B.N., Adhikari M., Park G. The Effects of Plasma on Plant Growth, Development, and Sustainability. – Applied Science, 2020, vol. 10(17), 6045, DOI:10.3390/app10176045.
7. Park Ye., et al. The Biological Effects of Surface Dielectric Barrier Discharge on Seed Germination and Plant Growth with Barley. – Plasma Processes and Polymers, 2018, vol. 15, No. 2, pp. 1–8.
8. Dobrin D., et al. The Effect of Non-Thermal Plasma Treatment on Wheat Germination and Early Growth. – Innovative Food Science & Emerging Technology, 2015, vol. 29, pp. 255–260, DOI:10.1016/j.ifset.2015.02.006.
9. Sera B., et al. How Various Plasma Sources May Affect Seed Germination and Growth. – IEEE 13th Int. Conf. on Optimization of Electrical and Electronic Equipment, 2012, pp. 1365–1370, DOI:10.1109/OPTIM.2012.6231880.
10. Brandenburg R. Dielectric Barrier Discharges: Progress on Plasma Sources and on the Understanding of Regimes and Single Filaments. – Plasma Sources Science and Technology, 2017, 26(5), DOI: 10.1088/1361-6595/aa6426.
11. Лазукин А.В. и др. Предпосевная обработка семян озимой пшеницы поверхностным разрядом. – Журнал технической физики, 2020, т. 90, № 10, с. 1621–1627.
12. Гундарева С.В. и др. Предпосевная обработка озимой пшеницы поверхностным разрядом: устойчивость к низким температурам. – Письма в журнал технической физики, 2021, т. 47. № 17, c. 32–36.
13. Малашин М.В. и др. Полупроводниковый генератор высоковольтных прямоугольных импульсов для питания барьерного разряда. – Приборы и техника эксперимента, 2016, № 2, c. 71–75.
14. Стародубцева Г.П. и др. Обоснование параметров воздействия импульсного электрического поля при предпосевной обработке семян озимой пшеницы. – Вестник АПК Ставрополья, 2017, № 2(26), c. 44–48.
15. Agathokleous E., et al. Does the Root to Shoot Ratio Show a Hormetic Response to Stress? An Ecological and Environmental Perspective. – Journal Forestry Research, 2019, vol. 30, No. 5, pp. 1569–1580, DOI:10.1007/s11676-018-0863-7.
#
1. Rifna E.J., Ratish R.K., Mahendran R. Emerging Technology Applications for Improving Seed Germination. – Trends in Food Science and Technology, 2019, vol. 86, pp. 95–108, DOI:10.1016/j.tifs.2019.02.029.
2. Jayaram S.H. Sterilization of Liquid Foods by Pulsed Electric Fields. – IEEE Electrical Insulation Magazine, 2000, vol. 16, No. 6, pp. 17–25, DOI: 10.1109/57.887601.
3. Evrendilek G., et al. Development of Pulsed Electric Fields Treatment Unit to Treat Wheat Grains: Improvement of Seed Vigour and Stress Tolerance. – Computers and Electronics in Agriculture, 2021, vol. 185, 106129, DOI:10.1016/j.compag.2021.106129.
4. Ahmed Z., et al. Impact of Pulsed Electric Field Treatments on the Growth Parameters of Wheat Seeds and Nutritional Properties of Their Wheat Plantlets Juice. – Food Science and Nutrition, 2020, vol. 8, No. 5, pp. 2490–2500, DOI:10.1002/fsn3.1540.
5. Vasil'ev S.I., et al. Elektrofizicheskaya predposevnaya obrabotka semyan kak sposob intensifikatsii protsessov v rastenievodcheskoy otrasli sel'skogo hozyaystva (Electrophysical Seed Pre-Sowing Treatment as a Way to Intensify Processes in the Agricultural Sector). Kinel': SGАU, 2020, 243 p.
6. Adhikari B.N., Adhikari M., Park G. The Effects of Plasma on Plant Growth, Development, and Sustainability. – Applied Science, 2020, vol. 10(17), 6045, DOI:10.3390/app10176045.
7. Park Ye., et al. The Biological Effects of Surface Dielectric Barrier Discharge on Seed Germination and Plant Growth with Barley. – Plasma Processes and Polymers, 2018, vol. 15, No. 2, pp. 1–8.
8. Dobrin D., et al. The Effect of Non-Thermal Plasma Treatment on Wheat Germination and Early Growth. – Innovative Food Science & Emerging Technology, 2015, vol. 29, pp. 255–260, DOI:10.1016/j.ifset.2015.02.006.
9. Sera B., et al. How Various Plasma Sources May Affect Seed Germination and Growth. – IEEE 13th Int. Conf. on Optimization of Electrical and Electronic Equipment, 2012, pp. 1365–1370, DOI:10.1109/OPTIM.2012.6231880.
10. Brandenburg R. Dielectric Barrier Discharges: Progress on Plasma Sources and on the Understanding of Regimes and Single Filaments. – Plasma Sources Science and Technology, 2017, 26(5), DOI: 10.1088/1361-6595/aa6426.
11. Lazukin А.V., et al. Zhurnal tekhnicheskoy fiziki – in Russ. (Journal of Technical Physics), 2020, vol. 90, No. 10, pp. 1621–1627.
12. Gundareva S.V., et al. Pis'ma v zhurnal tekhnicheskoy fiziki – in Russ. (Letters to the Journal of Technical Physics), 2021, vol. 47. No. 17, pp. 32–36.
13. Malashin М.V., et al. Pribory i tekhnika eksperimenta – in Russ. (Instruments and Experimental Techniques), 2016, No. 2, pp. 71–75.
14. Starodubtseva G.P., et al. Vestnik APK Stavropol'ya – in Russ. (Bulletin of the Agroindustrial Complex of Stavropol Territory), 2017, No. 2(26), pp. 44–48.
15. Agathokleous E., et al. Does the Root to Shoot Ratio Show a Hormetic Response to Stress? An Ecological and Environmental Perspective. – Journal Forestry Research, 2019, vol. 30, No. 5, pp. 1569–1580, DOI:10.1007/s11676-018-0863-7