The Reactive Torque of a PMBL Motor with Magnets in Closed Rotor Slots

  • Alexandr A. AFANASYEV
  • Vladimir A. VATKIN
  • Dmitriy A. TOKMAKOV
Keywords: homogeneous sections, magnetic sheets, Fourier constants, rectangular sines and cosines, discrete truncated magnet bevel, magnet shielding, reactive torques

Abstract

A mathematical model of a PMBL motor with permanent magnets embedded in the rotor body is considered. The model is based on decomposing the active region into homogeneous cylindrical sections with de-energized magnetic sheets at their boundaries. The techniques applied in the method for separating the Fourier variables and magnetization of magnetically hard and magnetically soft media are used as model numerical analysis tools. It is shown, based on calculated and experimental data, that in a PMBL motor with magnets located in closed rotor slots, a discrete bevel of magnets per stator tooth pitch does not make it possible to eliminate the reactive torque. It can only be minimized to about 2% of the nominal torque. If there is no bevel, the reactive torque amplitude will be as large as one tenth of the nominal torque. It is found that with the externally placed magnets, the considered discrete bevel provides almost complete absence of the reactive torque. It has been concluded that for PMBL motors with closed rotor magnets, it is advisable to have a continuous bevel of the stator core slots per tooth pitch.

Author Biographies

Alexandr A. AFANASYEV

(Chuvash State University, Cheboksary, Russia) – Professor of the Management and Computer Science in Technical Systems Dept., Dr. Sci. (Eng.).

Vladimir A. VATKIN

(JSC “Cheboksary Electrical Apparatus Plant”, Cheboksary, Russia) – Chief Designer of the Electric Machines Dept., Cand. Sci. (Eng.).

Dmitriy A. TOKMAKOV

(JSC “Cheboksary Electrical Apparatus Plant”, Cheboksary, Russia) – Development Director.

References

1. Жуков В.П., Нестерин В.А. Высокомоментные вентильные электродвигатели серии 5ДВМ. – Электротехника, 2000, № 6, с. 19–21.
2. Лузин М.И. Магнитоэлектрический вентильный двигатель с улучшенными массогабаритными показателями и малым значением момента залипания ротора. – Электричество, 2010, № 6, с. 45–48.
3. Афанасьев А.А. и др. Аналитическое и численное моделирование магнитоэлектрических вентильных двигателей. – Электричество, 2021, № 6, с. 72–78.
4. Merritt B.T., et al. Halbach Array Motor/Generators: A Novel Generalized Electric Machine. – Halbach Festschrift Symposium Lawrence Livermore National Laboratory, 1994, No. 3, DOI:10.2172/88777.
5. Сан Ю., Сеньков А.П. Сравнение массогабаритных показателей вентильных двигателей с распределённой и зубцовой обмотками статора. – Вестник государственного университета морского и речного флота имени адмирала С.О. Макарова, 2016, № 3 (87), c. 174–180.
6. Пат. RU 2081496 C1. Многополюсный ротор электрической машины / И.П. Стадник, И.Ю. Горская, 1997.
7. Афанасьев А.А., Ефимов В.В., Токмаков Д.А. Применение магнитных клиньев в пазах магнитоэлектрических вентильных двигателей. – Электротехника, 2018, № 7, c. 54–58.
8. Пат. SU 1399861 A1. Способ сборки ротора синхронного двигателя с постоянными магнитами / В.Е. Никифоров и др., 1988.
9. Поливанов К.М. Теоретические основы электротехники, ч. 3. Теория электромагнитного поля. М.: Энергия, 1969, 352 с..
10. Полянин А.Д. Справочник по линейным уравнениям математической физики. М.: Физматлит, 2001, 576 с.
11. Боголюбов А.Н., Кравцов В.В. Задачи по математической физике. М.: Изд-во МГУ, 1998, 350 с.
12. Поливанов К.М. Ферромагнетики. М.; Л.: ГЭИ, 1957, 256 с.
13. Иванов-Смоленский А.В. Электромагнитные силы и преобразование энергии в электрических машинах. М.: Высшая школа, 1989, 312 с.
14. Юферов Ф.М. Электрические машины автоматических устройств. М.: Высшая школа, 1988, 479 с.
#
1. Zhukov V.P., Nesterin V.А. Elektrotekhnika – in Russ. (Electrical Engineering), 2000, No. 6, pp. 19–21.
2. Luzin М.I. Elektrichestvo – in Russ. (Electrisity), 2010, No. 6, pp. 45–48.
3. Afanas'ev А.А., et al. Elektrichestvo – in Russ. (Electrisity), 2021, No. 6, pp. 72–78.
4. Merritt B.T., et al. Halbach Array Motor/Generators: A Novel Generalized Electric Machine. – Halbach Festschrift Symposium Lawrence Livermore National Laboratory, 1994, No. 3, DOI:10.2172/88777.
5. San Yu., Sen'kov A.P. Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S.O. Makarova – in Russ. (Bulletin of the Admiral S.O. Makarov State University of Marine and River Fleet), 2016, №. 3 (87), c. 174–180.
6. Pаt. RU 2081496 C1. Mnogopolyusnyy rotor elektricheskoy mashiny (Multi-Pole Rotor of an Electric Machine) / I.P. Stadnik, I.Yu. Gorskaya, 1997.
7. Afanas'ev А.А., Efimov V.V., Tokmakov D.А. Elektrotekhnika – in Russ. (Electrical Engineering), 2018, No. 7, pp. 54–58.
8. Pat. SU 1399861 A1. Sposob sborki rotora sinhronnogo dviga-telya s postoyannymi magnitami (Method of Assembling the Rotor of a Synchronous Motor with Permanent Magnets) / V.Е. Nikiforov, et al, 1988.
9. Polivanov К.М. Teoreticheskie osnovy elektrotekhniki, ch. 3. Teoriya elektromagnitnogo polya (Theoretical foundations of electrical engineering, part 3. Theory of the electromagnetic field). М.: Energiya, 1969, 352 p.
10. Polyanin А.D. Spravochnik po lineynym uravneniyam matematicheskoy fiziki (Handbook of Linear Equations of Mathematical Physics). М.: Fizmatlit, 2001, 576 p.
11. Bogolyubov A.N., Kravtsov V.V. Zadachi po matematicheskoy fizike (Problems in Mathematical Physics). М.: Izd-vо MGU, 1998, 350 p.
12. Polivanov К.М. Ferromagnetiki (Ferromagnets). М.; L.: GEI, 1957, 256 p.
13. Ivanov-Smolenskiy А.V. Elektromagnitnye sily i preobrazovanie energii v elektricheskih mashinah (Electromagnetic Forces and Energy Conversion in Electric Machines). М.: Vysshaya shkola, 1989, 312 p.
14. Yuferov F.М. Elektricheskie mashiny avtomaticheskih ustroystv (Electric Machines of Automatic Devices). М.: Vysshaya shkola, 1988, 479 p.
Published
2022-01-09
Section
Article