A Method for Constructing a Three-phase Aircraft Network Stabilized in Frequency and Voltage with an Asynchronous Generator on the Turbine Shaft

  • Maxim A. KISLYAKOV
  • Kirill K. KRUTIKOV
  • Vyacheslav V. ROZHKOV
  • Vladimir V. FEDOTOV
Keywords: on-board electrical network, matrix direct frequency converters, high-speed asynchronous generator, computer simulation

Abstract

Frequency converters with various designs of the power circuit are widely used for supplying power to autonomous objects (e.g. aircraft, helicopters, etc.). Three-phase generators with variable frequency and voltage level, which are as a rule installed on the jet turbine shaft, behave as primary sources of electric power in this case. To obtain a stabilized three-phase output voltage, a two-level converter circuit has been widely used, which consists of an uncontrolled rectifier, a DC link, and a voltage-source inverter. Recent years have seen an interest in using direct frequency converters, in which the primary "poor" network is transformed into a stabilized secondary network within a single stage. To this end, modern topologies of the power circuit and algorithms for its control are used. The essential advantages of direct frequency converters are that they do not contain a DC link with bulky electrolytic capacitors of large capacitance, and their ability to perform energy conversion in one stage. Of particular interest is the possibility of using an asynchronous generator as the primary source of the onboard network. By combining it with a matrix direct frequency converter, in which the switch control algorithm developed by the authors is used, it becomes possible to obtain a high-quality on-board network for autonomous objects, which is stabilized in amplitude and frequency.

Author Biographies

Maxim A. KISLYAKOV

(Branch of the National Research University «Moscow Power Engineering Institute» in Smolensk, Smolensk, Russia) – Senior Lecturer of the Theoretical Foundations of Electrical Engineering Dept

Kirill K. KRUTIKOV

(Branch of the National Research University «Moscow Power Engineering Institute» in Smolensk, Smolensk, Russia) – Docent of the Theoretical Foundations of Electrical Engineering Dept., Cand. Sci. (Eng)

Vyacheslav V. ROZHKOV

(Branch of the National Research University «Moscow Power Engineering Institute» in Smolensk, Smolensk, Russia) – Deputy Director for Educational and Methodological Work, Head of the Electromechanical Systems Dept., Cand. Sci. (Eng)

Vladimir V. FEDOTOV

(Branch of the National Research University «Moscow Power Engineering Institute» in Smolensk, Smolensk, Russia) – Student of the Electromechanical Systems Dept

References

1. Машинский В.В. Резервная система генерирования электрической энергии для летательных аппаратов: дис. … канд. техн. наук. Новосибирск, НГТУ, 2014, 134 с.
2. Мещеряков В.Н., Байков Д.В. Энергосберегающий асинхронный электропривод на базе матричного преобразователя частоты. – Электротехника: сетевой электронный научный журнал, 2015, т. 2, № 2, с. 35–39.
3. Савельев В.А., Шелкунов Р.Г. Имитационная модель матричного преобразователя частоты. – Вестник ГГТУ им. П.О. Сухого, 2018, № 4, с. 54–61.
4. Mahajan S., et. al. Analysis and control of induction generator supplying stand-alone AC loads employing a Matrix Converter. – Engineering Science and Technology, an International Journal, 2017, vol. 20, pp. 649–661, DOI:10.1016/j.jestch.2017.02.006.
5. Mohamed E.E.M., Sayed M.A. Matrix Converters and Three-Phase Inverters Fed Linear Induction Motor Drives-Performance Compare. – Ain Shams Engineering Journal, 2018, vol. 9, pp. 329–340, DOI:10.1016/j.asej.2016.02.002.
6. Константинова С.В., Капустинский А.Ю., Ярошевич Т.М. Расчет емкости для работы мини-энергокомплекса на основе асинхронного генератора в автономном режиме. – Энергетика. Известия высших учебных заведений и энергетических объединений СНГ, 2021, т. 64, № 1, с. 40–50.
7. Oskin S.V., Barakin N.S., Kumejko A.A. Asynchronous Generator Automated Control System for Supplying Electricity to Sprinkling Machine. – IEEE International Russian Automation Conference, 2021, pp. 892–896, DOI: 10.1109/RusAutoCon52004.2021. 9537397.
8. Oskin S.V., Barakin N.S., Kumejko A.A. Asynchronous Generator with a Switchable Stator Winding for Powering the Electrical Equipment of Sprinkling Machines: Research Results. – International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 2021, pp. 90–95, DOI: 10.1109/ICIEAM 51226.2021.9446419.
9. Vyshnevskyi L., Mukha M., Vyshnevskyi D. Discrete-Pulse Voltage Control of an Asynchronous Generator. – IEEE International Conference on Modern Electrical and Energy Systems (MEES), 2021, DOI: 10.1109/MEES52427.2021.9598478.
10. Chatterjee H.S., Mahato S.N. A New and Simple Mathematical Technique to Study the Steady-state Performance of Isolated Asynchronous Generator. – Distributed Generation & Alternative Energy Journal, 2022, vol. 37, No. 3, pp. 663–682, DOI: 10.13052/dgaej2156-3306.37313.
11. Benbouhenni H. Amelioration Effectiveness of Torque and Rotor Flux Control Applied to the Asynchronous Generator for Dual-rotor Wind Turbine using Neural Third-order Sliding Mode Approaches. – International Journal of Engineering, 2022, vol. 35, No. 3, pp. 517–530, DOI:10.5829/ije.2022.35.03c.04.
12. Курилин С.П., Соколов А.М., Прокимнов Н.Н. Компьютерная программа для моделирования показателей технического состояния электромеханических систем. – Прикладная информатика, 2022, т. 17, № 2, с.105–119.
13. Крутиков К.К., Кисляков М.А., Рожков В.В. Управление матричным непосредственным преобразователем частоты вторичных источников электропитания автономных объектов. – Электричество, 2021, № 7, с. 41–50.
14. Kislyakov M.A., et al. Improving the Characteristics of a Matrix Frequency Converter by Using Sliding Modes for the Control of Transistor Switching. – AIP Conference Proceedings, 2021, 2402, 030014, DOI:10.1063/5.0071855.
15. ГОСТ Р 54073-2017. Системы электроснабжения самолетов и вертолетов. Общие требования и нормы качества электроэнергии. М.: Стандартинформ, 2018, 36 с.
---
Работа выполнена в рамках государственного задания, проект № FSWF-2020-0019
#
1. Mashinskiy V.V. Rezervnaya sistema generirovaniya elek-tricheskoy energii dlya letatel'nyh apparatov: dis. … kand. tekhn. nauk (Backup Electric Power Generation System for Aircraft: Dis. ... Cand. Sci. (Eng.)). Novosibirsk, NGTU, 2014, 134 p.
2. Meshcheryakov V.N., Baykov D.V. Elektrotekhnika: setevoy elektronnyy nauchnyy zhurnal. – in Russ. (Electrical Engineering: Online Electronic Scientific Journal), 2015, vol. 2, No. 2, pp. 35–39.
3. Savel'ev V.A., Shelkunov R.G. Vestnik GGTU im. P.O. Suhogo – in Russ. (Bulletin of GSTU n.a. P.O. Sukhoi), 2018, № 4, с. 54–61.
4. Mahajan S., et al. Analysis and control of induction generator supplying stand-alone AC loads employing a Matrix Converter. – Engineering Science and Technology, an International Journal, 2017, vol. 20, pp. 649–661, DOI:10.1016/j.jestch.2017.02.006.
5. Mohamed E.E.M., Sayed M.A. Matrix Converters and Three-Phase Inverters Fed Linear Induction Motor Drives-Performance Compare. – Ain Shams Engineering Journal, 2018, vol. 9, pp. 329–340, DOI:10.1016/j.asej.2016.02.002.
6. Konstantinova S.V., Kapustinskiy A.Yu., Yaroshevich T.M. Energetika. Izvestiya vysshih uchebnyh zavedeniy i energeticheskih ob"edineniy SNG – in Russ. (Power Engineering. News of Higher Educational Institutions and Energy Associations of the CIS), 2021, vol. 64, No. 1, pp. 40–50.
7. Oskin S.V., Barakin N.S., Kumejko A.A. Asynchronous Generator Automated Control System for Supplying Electricity to Sprinkling Machine. – IEEE International Russian Automation Conference, 2021, pp. 892–896, DOI: 10.1109/RusAutoCon52004.2021. 9537397.
8. Oskin S.V., Barakin N.S., Kumejko A.A. Asynchronous Generator with a Switchable Stator Winding for Powering the Electrical Equipment of Sprinkling Machines: Research Results. – International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 2021, pp. 90–95, DOI: 10.1109/ICIEAM 51226.2021.9446419.
9. Vyshnevskyi L., Mukha M., Vyshnevskyi D. Discrete-Pulse Voltage Control of an Asynchronous Generator. – IEEE International Conference on Modern Electrical and Energy Systems (MEES), 2021, DOI: 10.1109/MEES52427.2021.9598478.
10. Chatterjee H.S., Mahato S.N. A New and Simple Mathematical Technique to Study the Steady-state Performance of Isolated Asynchronous Generator. – Distributed Generation & Alternative Energy Journal, 2022, vol. 37, No. 3, pp. 663–682, DOI: 10.13052/dgaej2156-3306.37313.
11. Benbouhenni H. Amelioration Effectiveness of Torque and Rotor Flux Control Applied to the Asynchronous Generator for Dual-rotor Wind Turbine using Neural Third-order Sliding Mode Approaches. – International Journal of Engineering, 2022, vol. 35, No. 3, pp. 517–530, DOI:10.5829/ije.2022.35.03c.04.
12. Kurilin S.P., Sokolov A.M., Prokimnov N.N. Prikladnaya informatika – in Russ. (Applied Computer Science), 2022, vol. 17, No. 2, pp.105–119.
13. Krutikov K.K., Kislyakov M.A., Rozhkov V.V. Elektrichestvo – in Russ. (Electricity), 2021, No. 7, pp. 41–50.
14. Kislyakov M.A., et al. Improving the Characteristics of a Matrix Frequency Converter by Using Sliding Modes for the Control of Transistor Switching. – AIP Conference Proceedings, 2021, 2402, 030014, DOI:10.1063/5.0071855.
15. GОSТ R 54073-2017. Sistemy elektrosnabzheniya samoletov i vertoletov. Obshchie trebovaniya i normy kachestva elektroenergii (Electric Power Supply Systems of Airplanes and Helicopters. General Requirements and Norms of Electricity Quality). М.: Standartinform, 2018, 36 p.
---
The work was carried out within the framework of the State Task (Project No. FSWF-2020-0019)
Published
2022-04-22
Section
Article