Analysis of Effiency of Work of Asynchronous Machine with a Shartcircuited Rotor at a Scalar Frequency Control

  • Lyaman Gasan gyzy GASANOVA
  • Rauf Ismail ogly MUSTAFAYEV
Keywords: induction machine with a squirrel-cage rotor, mathematical model, driving torque, scalar frequency control, minimum power losses, constant overloading capacity, constant magnetic flux

Abstract

The article presents a procedure for analyzing the performance of a frequency controlled induction machine in the case of using a scalar control algorithm with keeping the power losses in the machine itself to a minimum and maintaining constant overload capacity and magnetic flux. The essence of the proposed procedure consists in combining the calculated values of machine parameters obtained from its mathematical model in the case of using frequency control with the analytical expressions characterizing the power loss components. As a result, it becomes possible to determine not only the total power losses in a frequency controlled induction machine, but also changes in its other operating parameters, the reactive power absorbed from the network being the most important one of them. It has been found that with these parameters, i.e., the total power losses in the machine and the absorbed reactive power duly taken into account, it is most expedient to use a control algorithm maintaining constant overloading capacity and magnetic flux at a constant torque on the machine shaft. With the machine shaft torque being of a windage type as determined from the power losses taken in combination with the absorbed reactive power, the best performance is achieved in using the machine control law maintaining its constant overloading capacity: kus = kn k fs w r.

Author Biographies

Lyaman Gasan gyzy GASANOVA

GASANOVA Lyaman Gasan gyzy (Azerbaijan Scientific-Research Design Institute of Power Engineering (ASRDIPE), Baku, Azerbaijan) — Cand. Sci. (Eng.)

Rauf Ismail ogly MUSTAFAYEV

MUSTAFAYEV Rauf Ismail ogly (ASRDIPE, Baku, Azerbaijan) — Professor, Dr. Sci. (Eng.)

References

Гузеев Б.В., Хакимьянов М.И. Современные промыш­ленные высоковольтные преобразователи частоты для регули­рования асинхронных и синхронных двигателей. — Нефтегазо­вое дело (электронный научный журнал), 2011, № 3, с. 441-450.

Мустафаев Р.И., Гасанова Л.Г. Моделирование и иссле­дование квазистационарных режимов работы ветроэлектриче­ских установок с асинхронными генераторами при частотном управлении. — Электричество, 2009, № 6, с. 36-42.

Мустафаев Р.И., Гасанова Л.Г., Мусаев М.М. Примене­ние регулируемых электрических машин в гидроагрегатах ма­лых ГЭС, работающих на энергосистему. — Электротехника, 2018, №5, с. 38—44.

Ekanayake J.B., Holdsworth L., Wu X. Jenkins N. Dynamic modeling of doubly-fed induction generator wind turbines. — IEEE Trans. Power Syst., 2003, vol. 18, No. 2, pp. 803—809.

Alghuwainem S.M., Hammouda R.A., Al-Farhan A.R. M. Transient analysis of a wind-driven induction generator/in Proc. Canadian Conf. Electrical Computer Engineering, 2001, рр. 13—16.

Parviainen A., Niemela M., Pyrhonen J. Modeling of axial flux permanent-magnet machines. — IEEE Transactions on Industry Applications, 2004, vol.40, No. 5, pp. 1333—1340.

Giulii Capponi F., De Donato G., Caricchi F. Recent Advances in Axial-Flux Permanent-Magnet Machine Technology. — IEEE Transactions on Industry Applications, 2012, vol. 48, No. 6, pp. 2190—2205.

Костенко М.П. Электрические машины. Специальная часть. М.; Л.: Госэнергоиздат, 1949, 712 с.

Булгаков А.А. Частотное управление асинхронными дви­гателями. М.: Наука, 1966, 216 р.

Сыромятников И.А. Режимы работы асинхронных и син­хронных двигателей, изд. 4-е. М.: Энергоатомиздат, 1984, 239 с.

Расулов М.М., Мустафаев Р.И. Статические характери­стики системы асинхронный двигатель—синхронный генератор соизмеримой мощности при частотном управлении. — Электро- техника,1970, № 11, с. 3—5.

Мустафаев Р.И., Гасанова Л.Г. Универсальная структура математической модели управляемых электрических машин пе­ременного тока. — Электричество, 2015, № 2, с. 40—48.

Применение аналоговых вычислительных машин в энер­гетических системах/Под ред. Н.И. Соколова. М.: Энергия, 1964, 408 с.

Копылов И.П. Математическое моделирование электри­ческих машин: Учебник для вузов, 3-е изд. М.: Высшая школа, 2001, 327 c.
#
Guzeyev B.V., Khakim’yanov M.I. Neftegazovoe delo (elektronnyi nauchnyi zhurnal) — in Russ. (Oil and Gas business (electronic scientific magazine), 2011, No. 3, pp. 441—450.

Mustafayev R.I., Gasanova L.G. Elektrichestvo — in Russ. (Electricity), 2009, No. 6, pp. 36—42.

Mustafayev R.I., Gasanova L.G., Musayev M.M. Elektrotekhnika — in Russ. (Electrical Engineering), 2018, No. 5, pp. 38-44.

Ekanayake J.B., Holdsworth L., Wu X. Jenkins N. Dynamic modeling of doubly-fed induction generator wind turbines. — IEEE Trans. Power Syst., 2003, vol. 18, No. 2, pp. 803—809.

Alghuwainem S.M., Hammouda R.A., Al-Farhan A.R. M. Transient analysis of a wind-driven induction generator/in Proc. Canadian Conf. Electrical Computer Engineering, 2001, pp. 13—16.

Parviainen A., Niemela M., Pyrhonen J. Modeling of axial flux permanent-magnet machines. — IEEE Transactions on Industry Applications, 2004, vol. 40, No. 5, pp. 1333—1340.

Giulii Capponi F., De Donato G., Caricchi F. Recent Advances in Axial-Flux Permanent-Magnet Machine Technology. — IEEE Transactions on Industry Applications, 2012, vol. 48, No. 6, pp. 2190-2205.

Kostenko M.P. Elektricheskiye mashiny. Spetsial’naya chast’ (Electrical machines. Special part). Moscow, Leningrad: Gosenergoizdat, 1949, 712 p.

Bulgakov A.A. Chastotnoe upravleniye asinkhronnymi dvigatelyami (Frequency control of induction electromators). Moscow, Nauka, 1966, 216 p.

Syromyatnikov I.A. Rezhimy raboty asinkhronnykh i sinkhronnykh dvigatelei (Operation modes of induction and synchronous motors), 4th edit. Moscow, Energoatomizdat, 1984, 239 p.

Rasulov M.M., Mustafayev R.I. Elektrotekhnika — in Russ. (Electrical Engineering), 1970, No. 11, pp. 3-5.

Mustafayev R.I., Gasanova L.G. Elektrichestvo — in Russ. (Electricity), 2015, No. 2, pp. 40-48.

Primeneniye analogovykh vychislitel’nykh mashin v energeticheskikh sistemakh (Application of analog computers in power systems)/Edit. by N.I. Sokolov. Moscow, Energiya, 1964, 408 p.

Kopylov I.P. Matematicheskoe modelirovaniye elektricheskikh mashin (Mathematical modeling of electric machines). Moscow, Vysshaya shkola, 2001, 327 p.
Published
2019-03-20
Section
Article