Simulation of an Autonomous DC Electric Power System with Solid-State Transformers

  • Abrek-Zaur R. DZHENDUBAEV
  • Yury G. KONONOV
  • Eduard A.-Z. DZHENDUBAEV
Keywords: DC electric power system, gas turbine, asynchronous generator, solid-state transformer

Abstract

The trends and reasons that stimulate the transition of electric power systems to direct current are considered. The weight, size, energy, and other advantages associated with such transition are shown. A model of an autonomous DC power system constructed on the basis of a gas turbine, high-speed asynchronous generator, and solid-state power transformers is presented, which confirms the operability and feasibility of such system. The results of simulating the start-up of a gas turbine unit, self-excitation of a high-speed asynchronous generator, connection of cable power lines, rheostatic limitation of DC solid-state transformer starting currents, and load surge are presented. A system for automatically stabilizing the voltage at the power line beginning is considered, which is performed by adjusting the gas turbine rotational frequency under the influence of voltage and current feedbacks. A system for stabilizing the load voltage by using a PWM-controlled inverter, which is an integral part of a solid-state DC transformer, is presented.

Author Biographies

Abrek-Zaur R. DZHENDUBAEV

(North-Caucasus State Academy, Cherkessk, Russia) – Head of the Power Supply Dept., Dr. Sci. (Eng.).

Yury G. KONONOV

(North-Caucasus Federal University, Stavropol, Russia) – Head of the Automated Electric Power Systems and Power Supply Dept., Dr. Sci. (Eng.).

Eduard A.-Z. DZHENDUBAEV

(North-Caucasus Federal University, Stavropol, Russia) – Postgraduate Student of the Automated Electric Power Systems and Power Supply Dept

References

1. Джендубаев А.-З.Р., Кононов Ю.Г., Джендубаев Э.А.-З. Электроэнергетика будущего: инверторные технологии и постоянный ток. – Энергия единой сети, 2020, № 4 (53), с. 58–70.
2. Kolar J.W. Solid State Transformer (SST) Applications. – A Glimpse into the Future, 2019 [Электрон. ресурс], URL: www.pes-publications.ee.ethz.ch (дата обращения 05.05.2022).
3. Solid State (Smart) Transformer Market by Product Type and Application: Global Opportunity Analysis and Industry Forecast, 2021–2028 [Электрон. ресурс], URL: https://www.marketresearch.com/Allied-Market-Research-v4029/Solid-State-Smart-Transformer-Product-14778192 (дата обращения 16.03.2022).
4. Huber J.E., Kolar J.W. Applicability of Solid-State Transformers in Today’s and Future Distribution Grids. – IEEE Transactions on Smart Grid, 2019, vol. 10, iss. 1, pp. 317–326.
5. Копылов И.П. Проектирование электрических машин. М.: Юрайт, 2019, 828 с.
6. АО «Объединенная двигателестроительная корпорация» [Электрон. ресурс], URL: https://www.uecrus.com/rus/map (дата обращения 16.03.2022).
7. Цанаев С.В. и др. Газотурбинные энергетические установки. М.: Издательский дом МЭИ, 2011, 428 с.
8. Waumans T., et al. Reynaerts Rotordynamic Behaviour of a Micro-Turbine Rotor on Air Bearings: Modelling Techniques and Experimental Verification. – International Conference on Noise and Vibration Engineering, 2006.
9. Комаров О.В., Блинов В.Л., Шемякинский А.С. Тепловые и газодинамические расчеты газотурбинных установок. Екатеринбург: Изд-во Урал. ун та, 2018, 164 с.
10. Антипов В.Н., Данилевич Я.Б. Быстроходные электрические машины для энергетики; состояние и тенденции развития. – Электротехника, 2007, № 6, с. 2–5.
11. Балагуров В.А. Проектирование специальных электрических машин переменного тока. М.: Высшая школа, 1982, 272 с.
12. Thomas R., et al. Modeling and design analysis of the Tesla Model S induction motor. – International Conference on Electrical Machines (ICEM), 2020, DOI:10.1109/ICEM49940.2020.9270646.
13. Наука и техника. Что особенного в двигателях Tesla Model S Plaid [Электрон. ресурс], URL: https://naukatehnika.com/chto-osobennogo-v-dvigatelyah-tesla-model-s-plaid.html (дата обращения 16.03.2022).
14. Сайт MathWorks. [Электрон. ресурс], URL: https://www.mathworks.com/products/matlab.html (дата обращения 16.03.2022).
15. Меркурьев Г.В., Шаргин Ю.М. Устойчивость энергосистем. СПб.: НОУ «Центр подготовки кадров энергетики», 2008, т. 2, 376 с.
16. Булатов Ю.Н., Крюков А.В., Нгуен Ван Хуан. Моделирование газотурбинной установки с прогностическими регуляторами напряжения и скорости. – Известия высших учебных заведений. Проблемы энергетики, 2020, т. 22, № 3, с. 60–67.
17. Джендубаев А.-З.Р., Черных И.В. Самовозбуждение автономных генераторов. Ч. 1. Теоретические аспекты. – Электротехника, 2017, № 11, с. 88–93.
18. Джендубаев А.-З.Р., Черных И.В. Самовозбуждение автономных генераторов. Ч. 2. Исследование самовозбуждения асинхронного генератора с учетом стартера в виде остаточного напряжения на конденсаторах возбуждения. – Электротехника, 2018, № 2, c. 64–69.
19. Козаченко А.Н. Эксплуатация компрессорных станций магистральных газопроводов. М.: Нефть и газ, 1999, 463 с.
---
Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 20-38-90127)
#
1. Dzhendubaev A.-Z.R., Kononov Yu.G., Dzhendubaev E.A.-Z. Energiya edinoy seti – in Russ. (Unified Grid Energy), 2020, No. 4 (53), pp. 58–70.
2. Kolar J.W. Solid State Transformer (SST) Applications. – A Glimpse into the Future, 2019 [Electron. resource], URL: www.pes-publications.ee.ethz.ch (Date of appeal 05.05.2022).
3. Solid State (Smart) Transformer Market by Product Type and Application: Global Opportunity Analysis and Industry Forecast, 2021–2028 [Electron. resource], URL: https://www.marketresearch.com/Allied-Market-Research-v4029/Solid-State-Smart-Transformer-Product-14778192 (Date of appeal 16.03.2022).
4. Huber J.E., Kolar J.W. Applicability of Solid-State Transfor-mers in Today’s and Future Distribution Grids. – IEEE Transactions on Smart Grid, 2019, vol. 10, iss. 1, pp. 317–326.
5. Kopylov I.P. Proektirovanie elektricheskih mashin (Design of Electric Machines). М.: Yurayt, 2019, 828 p.
6. AO «Ob"edinennaya dvigatelestroitel'naya korporatsiya» (JSC "United Engine Corporation") [Electron. resource], URL: https://www.uecrus.com/rus/map (Date of appeal 16.03.2022).
7. Tsanaev S.V., et al. Gazoturbinnye energeticheskie ustanovki (Gas Turbine Power Plants). М.: Izdatel'skiy dom MEI, 2011, 428 p.
8. Waumans T., et al. Reynaerts Rotordynamic Behaviour of a Micro-Turbine Rotor on Air Bearings: Modelling Techniques and Experimental Verification. – International Conference on Noise and Vibration Engineering, 2006.
9. Komarov O.V., Blinov V.L., Shemyakinskiy A.S. Teplovye i gazodinamicheskie raschety gazoturbinnyh ustanovok (Thermal and Gas Dynamic Calculations of Gas Turbine Installations). Ekaterinburg: Izd-vo Ural. un ta, 2018, 164 p.
10. Antipov V.N., Danilevich Ya.B. Elektrotekhnika – in Russ. (Electrical Engineering), 2007, No. 6. pp. 2–5.
11. Balagurov V.А. Proektirovanie spetsial'nyh elektricheskih mashin peremennogo toka (Design of Special AC Electric Machines). М.: Vysshaya shkola, 1982, 272 p.
12. Thomas R., et al. Modeling and design analysis of the Tesla Model S induction motor. – International Conference on Electrical Machines (ICEM), 2020, DOI:10.1109/ICEM49940.2020.9270646.
13. Nauka i tekhnika. Chto osobennogo v dvigatelyah Tesla Model S Plaid (Science and Technology. What's Special about Tesla Model S Plaid Engines) [Electron. resource], URL: https://naukatehnika.com/chto-osobennogo-v-dvigatelyah-tesla-model-s-plaid.html (Date of appeal 16.03.2022).
14. Website of MathWorks. [Electron. resource], URL: https://www.mathworks.com/products/matlab.html (Date of appeal 16.03.2022).
15. Merkur'ev G.V., Shargin Yu.М. Ustoychivost' energosistem (Stability of Power Systems). SPb.: NOU «TSentr podgotovki kadrov energetiki», 2008, vol. 2, 376 p.
16. Bulatov Yu.N., Kryukov A.V., Nguen Van Huan. Izvestiya vysshih uchebnyh zavedeniy. Problemy energetiki – in Russ. (News of Higher Educational Institutions. Energy Problems), 2020, т. 22, No. 3. pp. 60–67.
17. Dzhendubaev A.-Z.R., Chernyh I.V. Elektrotekhnika – in Russ. (Electrical Engineering), 2017, No. 11, pp. 88–93.
18. Dzhendubaev A.-Z.R., Chernyh I.V. Elektrotekhnika – in Russ. (Electrical Engineering), 2018, No. 2, pp. 64–69.
19. Kozachenko A.N. Ekspluatatsiya kompressornyh stantsiy magistral'nyh gazoprovodov (Operation of Compressor Stations of Main Gas Pipelines). М.: Neft' i gaz, 1999, 463 p.
---
This work was financially supported by the RFBR, grant no. 20-38-90127
Published
2022-05-05
Section
Article