Examination of HTSP Tape Coils by Computed Tomography

  • Vitaliy B. MINASYAN
  • Elizaveta A. MALYH
  • Nikolay S. IVANOV
  • Yuriy A. ZANEGIN
  • Bruno DOUINE
Keywords: high-temperature superconductor, HTS coil, non-destructive testing, predictive analysis, computed tomography, Nordson Dage

Abstract

In manufacturing high-temperature superconductor (HTS) devices, outgoing control of their quality must be carried out. Conventionally, for coils made of HTS, electrical tests are carried out to determine the critical current. In case of an unsatisfactory result, the reason why the critical current is below its expected value should be determined. The HTS tape coil manufacturing quality should be checked on the basis of non-destructive test methods. The article proposes an HTS coil examination technology, according to which the actual locations of the tape and gaps between the coil turns and rows are determined with subsequently analyzing the obtained values. To this end, the samples were scanned using the computed tomography method on the Nordson Dage XD7600NT X-ray machine with the μCT module, and the data obtained were processed using the VolumeGraphics VGStudio 2.2 visualization software. The proposed technology can be used as part of a predictive analysis of the state of the HTS coils of electrical machine windings.

Author Biographies

Vitaliy B. MINASYAN

(Moscow Aviation Institute (The National Research University), Moscow, Russia) – Engineer of the Digital Technologies and Information Systems Dept.

Elizaveta A. MALYH

(Moscow Aviation Institute (The National Research University), Moscow, Russia) – technician of the Digital Technologies and Information Systems Dept.

Nikolay S. IVANOV

(Moscow Aviation Institute (The National Research University), Moscow, Russia) – Docent of the Electrical Power, Electromechanics and Biotechnical Systems Dept., Cand. Sci. (Eng.).

Yuriy A. ZANEGIN

(Moscow Aviation Institute (The National Research University), Moscow, Russia) – engineer of the Electrical Power, Electromechanics and Biotechnical Systems Dept.

Bruno DOUINE

(University of Lorraine in Vandoeuvre-les-Nancy, Nancy, France) – Professor, PhD (in Electrical Engineering)

References

1. Recent Advances in SuperOx 2G HTS Wire Manufacturing Facilities, Performance and Customisation, 2020 [Электрон. ресурс], URL: c8d348bf31f4ce905689df9108a31a9d.pdf (дата обращения 12.05.2022).
2. Kozub S., et al. HTS Racetrack Coils for Electrical Machines. – Refrigeration Science and Technology, Prague, 2014, pp. 283–287.
3. Zanegin S., et al. Manufacturing and Testing of AC HTS-2 Coil for Small Electrical Motor. – Journal of Supercondactivity and Novel Magnetism, 2020, DOI: 10.1007/s10948-019-05226-1.
4. Statra Y., et al. A Volume Integral Approach for the Modelling and Design of HTS Coils. – COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2019, vol. 38, No. 4, pp. 1133–1140, DOI: 10.1108/COMPEL-10-2018-0392.
5. High-temperature Superconducting Wire Critical Current Data-base [Электрон. ресурс], URL: http://htsdb.wimbush.eu/ (дата обращения 12.05.2022).
6. Wang Y.S. Keynote Talk – Review of AC Loss Measuring Methods for HTS Tape and Unit. – IEEE International Conferense on Applied Superconductivity and Electromagnetic Devices, 2013, vol. 24, No. 5, p. 534, DOI: 10.1109/ASEMD.2013.6780838.
7. XD-7600NT – Dage [Электрон. ресурс], URL: https://www.nanolabtechnologies.com/xd-7600nt-dage (дата обращения 12.05.2022).
8. VGSTUDIO: The Simple Solution for the Visualization of CT Data [Электрон. ресурс], URL: https://www.volumegraphics.com/en/products/vgstudio.html (дата обращения 12.05.2022).
9. LOCTITE STYCAST 2850FT: Technical Data Sheet . [Электрон. ресурс], URL: https://tdsna.henkel.com/NA/UT/HNAUTTDS.nsf/web/35541AEFDE6FDF8485257576004480E6/$File/STYCAST 2850FT-EN.pdf (дата обращения 12.05.2022).
10.  Ida N., Meyendorf N. Handbook of Advanced Nondestructive Evaluation. Springer, Cham, 2019, 1036 p., DOI:10.1007/978-3-319-26553-7.
11. Vasarhelyi L., et al. Microcomputed Tomography–Based Characterization of Advanced Materials: a Review. – Materials Today Advances, 2020, 8, 100084, DOI:10.1016/j.mtadv.2020.100084.
12. Carmignato S., Dewulf W., Leach R. Industrial X-Ray Computed Tomography. Springer International Publishing AG, 2018, DOI:10.1007/978-3-319-59573-3.
13. Natterer F. The Mathematics of Computerized Tomography. Philadelphia: CEAM, 2001, 184 p., DOI:10.1137/1.9780898719284.
14. Natterer F., Wubbeling F. Mathematical Methods in Image Reconstruction. Philadelphia: SIAM, 2001, 228 p., DOI:10.1137/1.978 0898718324.
15. Orekhov A.A., Ripetskiy A.V., Fedoseev D.V. Surface Roughness Assessment Based On Discrete Model Representation For Additive Manufactured Parts. – Periódico Tchê Química, 2018, vol. 15 (1), pp. 514–524.
#
1. Recent Advances in SuperOx 2G HTS Wire Manufacturing Facilities, Performance and Customisation, 2020 [Electron. resource], URL: c8d348bf31f4ce905689df9108a31a9d.pdf (Date of appeal 12.05.2022).
2. Kozub S., et al. HTS Racetrack Coils for Electrical Machines. – Refrigeration Science and Technology, Prague, 2014, pp. 283–287.
3. Zanegin S., et al. Manufacturing and Testing of AC HTS-2 Coil for Small Electrical Motor. – Journal of Supercondactivity and Novel Magnetism, 2020, DOI: 10.1007/s10948-019-05226-1.
4. Statra Y., et al. A Volume Integral Approach for the Modelling and Design of HTS Coils. – COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2019, vol. 38, No. 4, pp. 1133–1140, DOI: 10.1108/COMPEL-10-2018-0392.
5. High-temperature Superconducting Wire Critical Current Database [Electron. resource], URL: http://htsdb.wimbush.eu/ (Date of appeal 12.05.2022).
6. Wang Y.S. Keynote Talk – Review of AC Loss Measuring Methods for HTS Tape and Unit. – IEEE International Conferense on Applied Superconductivity and Electromagnetic Devices, 2013, vol. 24, No. 5, p. 534, DOI: 10.1109/ASEMD.2013.6780838.
7. XD-7600NT – Dage [Electron. resource], URL: https://www.nanolabtechnologies.com/xd-7600nt-dage (Date of appeal 12.05.2022).
8. VGSTUDIO: The Simple Solution for the Visualization of CT Data [Electron. resource], URL: https://www.volumegraphics.com/en/products/vgstudio.html (Date of appeal 12.05.2022).
9. LOCTITE STYCAST 2850FT: Technical Data Sheet [Electron. resource], URL: https://tdsna.henkel.com/NA/UT/HNAUTTDS.nsf/web/35541AEFDE6FDF8485257576004480E6/$File/STYCAST 2850FT-EN.pdf (Date of appeal 12.05.2022).
10. Ida N., Meyendorf N. Handbook of Advanced Nondestructive Evaluation. Springer, Cham, 2019, 1036 p., DOI:10.1007/978-3-319-26553-7.
11. Vasarhelyi L., et al. Microcomputed Tomography–Based Characterization of Advanced Materials: a Review. – Materials Today Advances, 2020, 8, 100084, DOI:10.1016/j.mtadv.2020.100084.
12. Carmignato S., Dewulf W., Leach R. Industrial X-Ray Computed Tomography. Springer International Publishing AG, 2018, DOI:10.1007/978-3-319-59573-3.
13. Natterer F. The Mathematics of Computerized Tomography. Philadelphia: CEAM, 2001, 184 p., DOI:10.1137/1.9780898719284.
14. Natterer F., Wubbeling F. Mathematical Methods in Image Reconstruction. Philadelphia: SIAM, 2001, 228 p., DOI:10.1137/1.9780 898718324.
15. Orekhov A.A., Ripetskiy A.V., Fedoseev D.V. Surface Roughness Assessment Based On Discrete Model Representation For Additive Manufactured Parts. – Periódico Tchê Química, 2018, vol. 15 (1), pp. 514–524.
Published
2022-05-12
Section
Article