Analyzing the Power Performance Characteristics of Partially Shaded Photovoltaic Arrays
Abstract
Building integrated photovoltaic BIPV systems are currently the most dynamically developing segment of the solar energy market. These systems come as photovoltaic panels integrated into building enclosing structures: windows, roof, and facades. One specific feature of BIPV systems is that their photovoltaic panels are spatially oriented in nonoptimal manner, which causes them to operate with significant energy losses when they become partially shaded. A thorough analysis of the power performance characteristics of photovoltaic converters is a necessary basis for the development of new and improvement of known technical solutions aimed at achieving more efficient performance of photovoltaic arrays operating under the conditions of their partial shading. A photovoltaic converter mathematical model implemented in the MatLab/Simulink environment is presented, which provides the possibility of studying the power performance characteristics of photovoltaic modules of various types by using only the technical specification from the manufacturer as input data. The results of analyzing the power performance characteristics of the SPRX20250BLK photovoltaic module operating under partial shading are presented. It is shown that in a series-connected chain of unevenly illuminated solar cells, operation modes are possible in which the volt-ampere characteristic of less illuminated shifts to the region of negative values, which, in turn will result in that part of the power generated by more intensely illuminated cells will be dissipated on less illuminated cells. It has been established that the use of bypass diodes prevents the occurrence of so-called 'hot spots' on photovoltaic modules under conditions of uneven illumination, but does not solve the problem of efficiently using the energy generated by photovoltaic panels. With a small number of bypass diodes, shading even a small part of the photovoltaic panel surface leads to significant losses of output power, whereas an attempt to increase the number of diodes complicates significantly the production technology of the modules themselves and tightens the requirements for other components of photovoltaic stations such as controllers and converters.
References
2. Alves T.N., et al. Different Techniques to Mitigate Partial Shading in Photovoltaic Panels. – Energies, 2021, vol. 14 (13), 3863, DOI: 10.3390/en14133863.
3. Zheng H., et al. Shading and Bypass Diode Impacts to Energy Extraction of PV Arrays under Different Converter Configurations. – Renewable Energy, 2014, vol. 68, pp. 58–66, DOI: 10.1016/j.renene.2014.01.025.
4. Mesquita D.B., et al. A Review and Analysis of Technologies Applied in PV Modules. – 2019 IEEE PES Innovative Smart Grid Technologies Conference (ISGT Latin America), 2019, DOI: 10.1109/ISGT-LA.2019.8895369.
5. Sarah K.E., Roland U., Ephraim N.C. A Review of Solar Photovoltaic Technologies. – International Journal of Engineering Research & Technology (IJERT), 2020, vol. 9, pp. 741–749, DOI: 10.17577/IJERTV9IS070244.
6. Tarabsheh A.A., Akmal M, Ghazal M. Improving the Efficiency of Partially Shaded Photovoltaic Modules without Bypass Diodes. – Electronics, 2021, vol. 10, 1046, DOI: 10.3390/electronics10091046.
7. Pannebakker B.B., de Waal A.C., van Sark W. Photovoltaics in the Shade: One Bypass Diode per Solar Cell Revisited. – Progress in Photovoltaics: Research and Applications, 2017, vol. 25, pp. 836–849, DOI: 10.1002/pip.2898.
8. Hanifi H., et al. A Novel Electrical Approach to Protect PV Modules under Various Partial Shading Situations. – Solar Energy, 2016, vol. 193, pp. 814–819, DOI: 10.1016/j.solener.2019.10.035.
9. Boghdady T.A., et al. Comparative Study of Optimal PV Array Configurations and MPPT under Partial Shading with Fast Dynamical Change of Hybrid Load. – Sustainability, 2022, vol. 14, 2937, DOI: 10.3390/su14052937.
10. Akrami M., Pourhossein K. A Novel Reconfiguration Procedure to Extract Maximum Power from Partially-shaded Photovoltaic Arrays. – Solar Energy, 2018, vol. 173, pp. 110–119, DOI: 10.1016/j.solener.2018.06.067.
11. Tubniyom C., et al. Minimization of Losses in Solar Photovoltaic Modules by Reconfiguration under Various Patterns of Partial Shading. – Energies, 2018, vol. 12(24), DOI: 10.3390/en12010024.
12. Calcabrini A., et al. Simulation Study of the Electrical Yield of Various PV Module Topologies in Partially Shaded Urban Scenarios. – Solar Energy, 2021, vol. 225, pр. 726–733, DOI: 10.1016/j.solener.2021.07.061.
13. Sinapis K., et al. A Comprehensive Study on Partial Shading Response of c-Si Modules and Yield Modeling of String Inverter and Module Level Power Electronics. – Solar Energy, 2016, vol. 135, pр. 731–741, DOI: 10.1016/j.solener.2016.06.050.
14. Постановление Правительства РФ от 02.03.2021 № 299 "О внесении изменений в некоторые акты Правительства Российской Федерации в части определения особенностей правового регулирования отношений по функционированию объектов микрогенерации" [Электрон. ресурс], URL: http://publication.pravo.gov.ru/Document/View/0001202103060015 (дата обращения 04.07.2022).
15. Obukhov S.G., Plotnikov I.A., Kryuchkova M. Simulation of Electrical Characteristics of a Solar Panel. – IOP Conference Series: Materials Science and Engineering, 2016, vol. 132 (1), 012017, DOI: 10.1088/1757-899x/132/1/012017.
16. Раушенбах Г. Справочник по проектированию солнечных батарей. М.: Энергоатомиздат, 1983, 360 с.
17. Bishop J.W. Computer Simulation of the Effects of Electrical Mismatches in Photovoltaic Cell Interconnection Circuits. – Solar Cells, 1988, vol. 25, pp. 73–89, DOI: 10.1016/0379-6787(88)90059-2.
18. National Renewable Energy Laboratory (NREL) [Электрон. ресурс], URL: https://www.nrel.gov/ (дата обращения 04.07.2022).
19. SunPower [Электрон. ресурс], URL: https://us.sunpower.com/(дата обращения 04.07.2022).
20. Obukhov S.G., Plotnikov I.A., Klimova G.N. A New Method for Determining Parameters of Photovoltaic Module Based on the Data from Technical Specification. – Eurasian Physical Technical Journal, 2022, vol. 19, pp. 55–64, DOI: 10.31489/2022No1/55-64.
21. Baka M., et al. A Cost-Benefit Analysis for Reconfigurable PV Modules under Shading. – Solar Energy, 2019, vol. 178, pp. 69–78, DOI: 10.1016/j.solener.2018.11.063.
22. Obukhov S., et al. Optimal Performance of Dynamic Particle Swarm Optimization Based Maximum Power Trackers for Stand-Alone PV System under Partial Shading Conditions. – IEEE Access, 2020, vol. 1, pp. 20770–20785, DOI: 10.1109/ACCESS.2020.2966430. SJR 0.587.
23. Calcabrini A., et al. A Fully Reconfigurable Series-Parallel Photovoltaic Module for Higher Energy Yields in Urban Environments. – Renewable Energy, 2021, vol. 179, DOI: 10.1016/j.renene.2021.07.010
#
1. Renewables 2022 Global Status Report. – Paris: REN21 Secretariat, 2022, 312 p. [Electron. resource], URL: https://www.ren21.net/wp-content/uploads/2019/05/GSR2022_Full_Report.pdf (Date of appeal 04.07.2022).
2. Alves T.N., et al. Different Techniques to Mitigate Partial Shading in Photovoltaic Panels. – Energies, 2021, vol. 14 (13), 3863, DOI: 10.3390/en14133863.
3. Zheng H., et al. Shading and Bypass Diode Impacts to Energy Extraction of PV Arrays under Different Converter Configurations. – Renewable Energy, 2014, vol. 68, pp. 58–66, DOI: 10.1016/j.renene.2014.01.025.
4. Mesquita D.B., et al. A Review and Analysis of Technologies Applied in PV Modules. – 2019 IEEE PES Innovative Smart Grid Technologies Conference (ISGT Latin America), 2019, DOI: 10.1109/ISGT-LA.2019.8895369.
5. Sarah K.E., Roland U., Ephraim N.C. A Review of Solar Photovoltaic Technologies. – International Journal of Engineering Research & Technology (IJERT), 2020, vol. 9, pp. 741–749, DOI: 10.17577/IJERTV9IS070244.
6. Tarabsheh A.A., Akmal M, Ghazal M. Improving the Efficiency of Partially Shaded Photovoltaic Modules without Bypass Diodes. – Electronics, 2021, vol. 10, 1046, DOI: 10.3390/electronics10091046.
7. Pannebakker B.B., de Waal A.C., van Sark W. Photovoltaics in the Shade: One Bypass Diode per Solar Cell Revisited. – Progress in Photovoltaics: Research and Applications, 2017, vol. 25, pp. 836–849, DOI: 10.1002/pip.2898.
8. Hanifi H., et al. A Novel Electrical Approach to Protect PV Modules under Various Partial Shading Situations. – Solar Energy, 2016, vol. 193, pp. 814–819, DOI: 10.1016/j.solener.2019.10.035.
9. Boghdady T.A., et al. Comparative Study of Optimal PV Array Configurations and MPPT under Partial Shading with Fast Dynamical Change of Hybrid Load. – Sustainability, 2022, vol. 14, 2937, DOI: 10.3390/su14052937.
10. Akrami M., Pourhossein K. A Novel Reconfiguration Procedure to Extract Maximum Power from Partially-shaded Photovoltaic Arrays. – Solar Energy, 2018, vol. 173, pp. 110–119, DOI: 10.1016/j.solener.2018.06.067.
11. Tubniyom C, et al. Minimization of Losses in Solar Photovoltaic Modules by Reconfiguration under Various Patterns of Partial Shading. – Energies, 2018, vol. 12(24), DOI: 10.3390/en12010024.
12. Calcabrini A., et al. Simulation Study of the Electrical Yield of Various PV Module Topologies in Partially Shaded Urban Scenarios. – Solar Energy, 2021, vol. 225, pр. 726–733, DOI: 10.1016/j.solener.2021.07.061.
13. Sinapis K., et al. A Comprehensive Study on Partial Shading Response of c-Si Modules and Yield Modeling of String Inverter and Module Level Power Electronics. – Solar Energy, 2016, vol. 135, pр. 731–741, DOI: 10.1016/j.solener.2016.06.050.
14. Postanovlenie Pravitel'stva RF ot 02.03.2021 № 299 (Decree of the Government of the Russian Federation No. 299 dated 02.03.2021) [Electron. resource], URL: http://publication.pravo.gov.ru/Document/View/0001202103060015 (Date of appeal 04.07.2022).
15. Obukhov S.G., Plotnikov I.A., Kryuchkova M. Simulation of Electrical Characteristics of a Solar Panel. – IOP Conference Series: Materials Science and Engineering, 2016, vol. 132 (1), 012017, DOI: 10.1088/1757-899x/132/1/012017.
16. Raushenbah G. Spravochnik po proektirovaniyu solnechnyh batarey (Guide to the Design of Solar Panels). М.: Energoatomizdat, 1983, 360 p.
17. Bishop J.W. Computer Simulation of the Effects of Electrical Mismatches in Photovoltaic Cell Interconnection Circuits. – Solar Cells, 1988, vol. 25, pp. 73–89, DOI: 10.1016/0379-6787(88)90059-2.
18. National Renewable Energy Laboratory (NREL) [Electron. resource], URL: https://www.nrel.gov/ (дата обращения 04.07.2022).
19. SunPower [Electron. resource], URL: https://us.sunpower.com/( Date of appeal 04.07.2022).
20. Obukhov S.G., Plotnikov I.A., Klimova G.N. A New Method for Determining Parameters of Photovoltaic Module Based on the Data from Technical Specification. – Eurasian Physical Technical Journal, 2022, vol. 19, pp. 55–64, DOI: 10.31489/2022No1/55-64.
21. Baka M., et al. A Cost-Benefit Analysis for Reconfigurable PV Modules under Shading. – Solar Energy, 2019, vol. 178, pp. 69–78, DOI: 10.1016/j.solener.2018.11.063.
22. Obukhov S., et al. Optimal Performance of Dynamic Particle Swarm Optimization Based Maximum Power Trackers for Stand-Alone PV System under Partial Shading Conditions. – IEEE Access, 2020, vol. 1, pp. 20770–20785, DOI: 10.1109/ACCESS.2020.2966430. SJR 0.587.
23. Calcabrini A., et al. A Fully Reconfigurable Series-Parallel Photovoltaic Module for Higher Energy Yields in Urban Environments. – Renewable Energy, 2021, vol. 179, DOI: 10.1016/j.renene.2021.07.010