A Laboratory Setup for Testing Power Converters for Short-Term Overvoltage Exposure
Abstract
The article considers a laboratory setup for testing the stability of power converters to emergency conditions arising from an input overvoltage pulse up to 10 kV with duration of up to 12 ms as a result of switching processes. Such processes take place, for example, in the electrical circuits of DC electric locomotives. The laboratory setup has been designed using two power transistors and generates at its output an overvoltage pulse with the required duration of increasing to the specified amplitude and the required duration of decreasing to the specified voltage level. The setup electrical circuit diagram is given. Analytical expressions describing transients in the setup are defined, the accuracy of which is confirmed by computer simulation in the MATLAB Simulink environment. A mock-up sample of the proposed laboratory setup is described, and the results of its use in testing the PSN235 U2 auxiliary converter intended for the 3ES4K DC series electric freight locomotive are presented. The article is of interest to electrical engineers who are in charge for developing power electronic installations with an output pulse voltage of up to 10 kV for both railway rolling stock and industrial applications.
References
2. Пичугина М.Т. Высоковольтная электротехника. Томск: Изд-во ТПУ, 2011, 136 с.
3. Воршевский А.А. Обеспечение электромагнитной совместимости технических средств по импульсным помехам в судовых электротехнических системах: дис. … докт. техн. наук, 2007, 400 с.
4. Бочаров Ю.Н., Шнеерсон Г.А., Янчус Е.И. Генератор импульсного тока. СПб.: Санкт-Петербургский государственный политехнический университет, 2012, 100 с.
5. Volskiy S., Skorokhod Yu., Sorokin D. High-Voltage Converter for the Traction Application. – Advances in Power Electronics, 2016, ID 4705709, DOI:10.1155/2016/4705709.
6. Пичугина М.Т. Мощная импульсная техника. Томск: Изд-во ТПУ, 2013, 104 с.
7. Makarov S.N., Stephen R.L., Bitar J. Practical Electrical Engineering. Washington, USA: Worcester Polytechnic Institute, 2016, 986 p.
8. ГОСТ 33726-2016. Преобразователи статические нетяговые для железнодорожного подвижного состава. Общие технические условия. М.: Стандартинформ, 2016, 26 с.
9. Вольский С.И. и др. Имитатор импульсных высоковольтных перенапряжений. – Электричество, 2021, № 11, с. 18–27.
10. Бессонов Л.А., Бессонов В.Л. Теоретические основы электротехники. Электрические цепи. М.: Юрайт, 2019, 831 с.
11. Демирчян К.С. и др. Теоретические основы электротехники. СПб.: Питер, 2003, 463 с.
12. Skorokhod Yu., et al. Novel Algorithm to Protect Converter from Impulsive Overvoltages by Using Neural Networks. – PCIM2020, Nurnberg, 2020, pp. 1079–1085.
13. Ким К.К., Корнев А.С., Иващенко В.О. Руководство к решению задач по основам теории линейных и нелинейных электрических цепей. СПб.: Издательство ПГУПС, 2013, 94 с.
14. Пустынников С.В., Сипайлов А.Г., Шандарова Е.Б. Теоретические основы электротехники. Часть 1. Томск: Изд-во ТПУ, 2014, 92 с.
15. Терёхин В.Б., Дементьев Ю.Н. Компьютерное моделирование систем электропривода постоянного и переменного тока в Simulink. М.: Юрайт, 2019., 306 с.
16. Терехин В.В. Основы моделирования в MATLAB. Часть 2: Simulink. Новокузнецк: Кузбассвузиздат, 2004, 376 с.
17. Дементьев Ю.Н. и др. Компьютерное моделирование электрических систем постоянного и переменного тока в среде Matlab Simulink. Томск: Изд-во ТПУ, 2018, 497 с
#
1. Kasri N.F., Piah M.A.M., Adzis Z. Compact High-Voltage Pulse Generator for Pulsed Electric Field Applications: Lab-Scale Development. – Journal of Electrical and Computer Engineering, 2020, No. 1, DOI:10.1155/2020/6525483.
2. Pichugina М.Т. Vysokovol'tnaya elektrotekhnika (High-Voltage Electrical Engineering). Тоmsk: Izd-vo TPU, 2011, 136 p.
3. Vorshevskiy А.А. Obespechenie elektromagnitnoy sovmesti-mosti tekhnicheskih sredstv po impul'snym pomekham v sudovyh elektrotekhnicheskih sistemah: dis. … dokt. tekhn. nauk (Ensuring Electromagnetic Compatibility of Technical Means for Pulse Interference in Ship Electrical Systems: dis. ... Dr. Sci. (Eng.)), 2007, 400 p.
4. Bocharov Yu.N., Shneerson G.A., Yanchus E.I. Generator impul'snogo toka (Pulse Current Generator). SPb.: Sankt-Peterburgskiy gosudarstvennyy politekhnicheskiy universitet, 2012, 100 p.
5. Volskiy S., Skorokhod Yu., Sorokin D. High-Voltage Converter for the Traction Application. – Advances in Power Electronics, 2016, ID 4705709, DOI:10.1155/2016/4705709.
6. Pichugina М.Т. Moshchnaya impul'snaya tekhnika (Powerful Pulse Technique). Tomsk: Izd-vo TPU, 2013, 104 p.
7. Makarov S.N., Stephen R.L., Bitar J. Practical Electrical Engineering. Washington, USA: Worcester Polytechnic Institute, 2016, 986 p.
8. GОSТ 33726-2016. Preobrazovateli staticheskie netyagovye dlya zheleznodorozhnogo podvizhnogo sostava. Obshchie tekhnicheskie usloviya (Static Non-Tractive Converters for Railway Rolling Stock. General Specifications). М.: Standartinform, 2016, 26 p.
9. Vol'skiy S.I., et al. Elektrichestvo – in Russ. (Electricity), 2021, No. 11, pp. 18–27.
10. Bessonov L.A., Bessonov V.L. Teoreticheskie osnovy elektrotekhniki. Elektricheskie tsepi (Theoretical Foundations of Electrical Engineering. Electric Circuits). М.: Yurayt, 2019, 831 p.
11. Demirchyan K.S., et al. Teoreticheskie osnovy elektrotekhniki (Theoretical Foundations of Electrical Engineering). SPb.: Piter, 2003, 463 p.
12. Skorokhod Yu., et al. Novel Algorithm to Protect Converter from Impulsive Overvoltages by Using Neural Networks. – PCIM2020, Nurnberg, 2020, pp. 1079–1085.
13. Kim K.K., Kornev A.S., Ivashchenko V.О. Rukovodstvo k resheniyu zadach po osnovam teorii lineynyh i nelineynyh elektricheskih tsepey (A Guide to Solving Problems on the Basics of the Theory of Linear and Nonlinear Electrical Circuits). SPb.: Izdatel'stvo PGUPS, 2013, 94 p.
14. Pustynnikov S.V., Sipaylov A.G., Shandarova E.B. Teoreticheskie osnovy elektrotekhniki. Chast’ 1 (Theoretical Foundations of Electrical Engineering/ Part 1). Тоmsk: Izd-vo ТPU, 2014, 92 p.
15. Dementiev Yu.N., Terekhin V.B. Komp'yuternoe modelirovanie sistem elektroprivoda postoyannogo i peremennogo toka v Simulink (Computer Modeling of DC and AC Electric Drive Systems in Si-mulink). М.: Yurayt, 2019, 306 p.
16. Terekhin V.V. Osnovy modelirovaniya v MATLAB. Chast' 2. Simulink (Basics of Modeling in MATLAB. Part 2. Simulink). Novokuznetsk: Kuzbassvuzizdat, 2004, 376 p.
17. Dementiev Yu.N., et al. Komp'yuternoe modelirovanie elektrotekhnicheskih sistem postoyannogo i peremennogo toka v srede Matlab Simulink (Computer Modeling of Electrical Systems of Direct and Alternating Current in the Matlab Simulink Environment). Тоmsk: Izd-vo ТPU, 2018, 497 p