Lightning Initiation as a Consequence of Natural Thundercloud Evolution. Part 1. The Role of Detachment in Reducing the Critical Air Breakdown Field
Abstract
Direct measurements show that the maximum values of electric fields measured in thunderclouds are approximately an order of magnitude lower than the air breakdown (ionization threshold) field. At first glance, this means the impossibility of electron avalanches to form and, as a consequence, the impossibility of a lightning discharge to occur. This circumstance puts the question about the lightning origin physical mechanism on a par with the most amazing mysteries of the nature. For more than half a century of research, several mechanisms have been proposed to solve this problem, among which two main lines can be distinguished. The first group of approaches focuses on the possibility of a streamer or a system of streamers to initiate from the surface of one or several hydrometeors, while the second one interprets lightning initiation as a consequence of the runaway electrons breakdown emerging from the interaction between high-energy cosmic rays and the atmosphere. There are also hybrid scenarios that combine both the ideas. However, in view of certain limitations, none of the proposed approaches has been recognized as the final solution to the problem. The article describes a fundamentally new lightning initiation mechanism that develops sequentially on several spatiotemporal scales. The scenario proposed shows how a series of corona discharges occurring during collisions of hydrometeors seeds the cloud with decimeter-scale elevated ionic conductivity regions, the electric field at the poles of which increases to the level necessary for positive streamers to appear. At the next stage, multiple streamer discharges oriented by the direction of a large-scale electric field are combined into a single plasma network, within which a hot leader channel is formed. The mechanism discussed effectively utilizes small-scale and mesoscale electric field fluctuations arising in a thundercloud and can be implemented if the spatiotemporal frequency of corona discharges, accompanying collisions and near collisions of hydrometeors, and the potential difference between the strong intracloud field zone boundaries exceed 0.1 m-3s-1 and 3 MV, respectively. In contrast to alternative approaches, the proposed lightning initiation scenario can be implemented under the conditions of a typical thundercloud without the need to involve any external auxiliary factors. The study results are presented in three parts. This article gives an introductory part, which sets the general context of the narrative and determines the study aims, and describes the role the detachment of electrons from negative ions plays in the air breakdown field reduction. The authors' lightning initiation scenario based on the results described in the present paper is given in two subsequent publications.
References
2. Базелян Э.М., Райзер Ю.П. Физика молнии и молниезащиты. М.: Физматлит, 2001, 320 с.
3. Дементьева С.О. и др. Прогноз конвективных явлений и его верификация по данным наблюдений атмосферного электричества. – Известия РАН. Физика атмосферы и океана, 2020, т. 56, № 2, с. 150–157.
4. Romps D.M., et al. Projected Increase in Lightning Strikes in the United States Due to Global Warming. – Science, 2014, vol. 346(6211), pp. 851–854, DOI:10.1126/science.1259100.
5. Базелян Э.М., Райзер Ю.П. Механизм притяжения молнии и проблема лазерного управления молнией. – Успехи физических наук, 2000, т. 170, № 7, с. 753–769.
6. Smorgonskiy A., et al. Are Standardized Lightning Current Waveforms Suitable for Aircraft and Wind Turbine Blades Made of Composite Materials? – IEEE Transactions on Electromagnetic Compatibility, 2017, vol. 59(4), pp. 1320–1328, DOI:10.1109/TEMC.2017.2682324.
7. Franklin B. A Letter of Benjamin Franklin, Esq; to Mr. Peter Collinson, F.R.S. Concerning an Electrical Kite. – Philos. Trans. (1683–1775), 1753, vol. 47, pp. 565–567.
8. Dwyer J.R., Uman M.A. The Physics of Lightning. – Physics Reports, 2014, vol. 534(4), pp. 147–241, DOI:10.1016/j.physrep.2013.09.004.
9. Gorin B.N., Levitov V.I., Shkilev A.V. Some Principles of Leader Discharge of Air Gaps with a Strong Non-Uniform Field. – IEE Conf. Publ., 1976, vol. 143, pp. 274–278.
10. Malagon-Romero A., Luque A. Spontaneous Emergence of Space Stems Ahead of Negative Leaders in Lightning and Long Sparks. – Geophysical Research Letters, 2019, vol. 46(7), pp. 4029–4038, DOI:10.1029/2019GL082063.
11. Syssoev A.A., Iudin D.I. On a Possible Mechanism of Space Stem Formation at the Negative Corona Streamer Burst Periphery. – Atmospheric Research, 2021, vol. 259, DOI: 10.1016/j.atmosres.2021.105685.
12. Rakov V.A. A Review of Positive and Bipolar Lightning Discharges. – Bulletin of the American Meteorological Society, 2003, vol. 84(6), pp. 767–776, DOI:10.1175/BAMS-84-6-767.
13. Kostinskiy A.Yu., et al. Abrupt Elongation (Stepping) of Negative and Positive Leaders Culminating in an Intense Corona Streamer Burst: Observations in Long Sparks and Implications for Lightning. – Journal of Geophysical Research: Atmospheres, 2018, vol. 123(10), pp. 5360–5375, DOI:10.1029/2017JD027997.
14. Huang S., et al. Separate Luminous Structures Leading Positive Leader Steps. – Nature Communications, 2022, vol. 13, p. 3655, DOI:10.1038/s41467-022-31409-x.
15. Saba M.M.F., et al. Positive Leader Characteristics from High-Speed Video Observations. – Geophysical Research Letters, 2008, vol. 35(7), p. L07802, DOI:10.1029/2007GL033000.
16. Mazur V., et al. Recoil Leader Formation and Development. – Journal of Electrostatics, 2013, vol. 71(4), pp. 763–768, DOI:10.1016/j.elstat.2013.05.001.
17. Van der Velde O.A., Montanya J. Asymmetries in Bidirectional Leader Development of Lightning Flashes. – Journal of Geophysical Research: Atmospheres, 2013, vol. 118(24), pp. 13504–13519, DOI:10.1002/2013JD020257.
18. Yuan S., et al. Development of Side Bidirectional Leader and Its Effect on Channel Branching of the Progressing Positive Leader of Lightning. – Geophysical Research Letters, 2019, vol. 46(3), pp. 1746-1753, DOI:10.1029/2018GL080718.
19. Montanya J., Van der Velde O.A., Williams E.R. The Start of Lightning: Evidence of Bidirectional Lightning Initiation. – Scientific Reports, 2015, vol. 5, p. 15180, DOI:10.1038/srep15180.
20. Warner T.A., et al. Observations of Bidirectional Lightning Leader Initiation and Development Near Positive Leader Channels. – Journal of Geophysical Research: Atmospheres, 2016, vol. 121(15), pp. 9251–9260, DOI:10.1002/2016JD025365.
21. Имянитов И.М., Чубарина Е.В. Электричество свободной атмосферы. Л.: Гидрометеоиздат, 1965, 240 с.
22. Имянитов И.М., Чубарина Е.В., Шварц Я.М. Электричество облаков. Л.: Гидрометеоиздат, 1970, 91 с.
23. Имянитов И.М. Приборы и методы для изучения электричества атмосферы. М.: Гостехиздат, 1957, 483 с.
24. Winn W.P., Schwede G.W., Moore C.B. Measurements of Electric Fields in Thunderclouds. – Journal of Geophysical Research, 1974, vol. 79, pp. 1761–1767, DOI: 10.1029/JC079I012P01761.
25. Базелян Э.М., Райзер Ю.П. Искровой разряд. М.: МФТИ, 1997, 320 с.
26. Loeb L.B. The Mechanisms of Stepped and Dart Leaders in Cloud-to-Ground Lightning Strokes. – Journal of Geophysical Research, 1966, vol. 71(20), pp. 4711–4721.
27. Phelps C.T. Positive Streamer System Intensification and Its Possible Role in Lightning Initiation. – Journal of Atmospheric and Solar-Terrestrial Physics, 1974, vol. 36(1), pp. 103–111.
28. Griffiths R.F., Phelps C.T. A Model for Lightning Initiation Arising from Positive Corona Streamer Development. – Journal of Geophysical Research, 1976, vol. 81(21), pp. 3671–3676, DOI: 10.1029/JC081I021P03671.
29. Gurevich A.V., Milikh G.M., Roussel-Dupre R. Runaway Electron Mechanism of Air Breakdown and Preconditioning during a Thunderstorm. – Physics Letters A, 1992, vol. 165(5–6), pp. 463–468, DOI:10.1016/0375-9601(92)90348-P.
30. Gurevich A.V., Zybin K.P., Roussel-Dupre R.A. Lightning Initiation by Simultaneous Effect of Runaway Breakdown and Cosmic Ray Showers. – Physics Letters A, 1999, vol. 254(1–2), pp. 79–87, DOI: 10.1016/S0375-9601(99)00091-2.
31. Гуревич А.В., Зыбин К.П. Пробой на убегающих электронах и электрические разряды во время грозы. – Успехи физических наук, 2001, т. 171, № 11, с. 1177–1199.
32. Dwyer J.R. The Initiation of Lightning By Runaway Air Breakdown. – Geophysical Research Letters, 2005, vol. 32(20), p. L20808, DOI:10.1029/2005GL023975.
33. Hare B.M., et al. Do Cosmic Ray Air Showers Initiate Lightning? A Statistical Analysis of Cosmic Ray Air Showers and Lightning Mapping Array Data. – Journal of Geophysical Research: Atmospheres, 2017, vol. 122(15), pp. 8173–8186, DOI:10.1002/2016JD025949.
34. Petersen D., et al. A Brief Review of the Problem of Lightning Initiation and a Hypothesis of Initial Lightning Leader Formation. – Journal of Geophysical Research, 2008, vol. 113(D17), p. D17205, DOI:10.1029/2007JD009036.
35. Sadighi S., et al. Streamer Formation and Branching from Model Hydrometeors in Subbreakdown Conditions Inside Thunderclouds. – Journal of Geophysical Research: Atmospheres, 2015, vol. 120(9), pp. 3660–3678, DOI:10.1002/2014JD022724.
36. Dubinova A., et al. Prediction of Lightning Inception by Large Ice Particles and Extensive Air Showers. – Physical Review Letters, 2015, vol. 115(1), p. 015002, DOI:10.1103/PhysRevLett.115.015002.
37. Cai Q., Jansky J., Pasko V.P. Initiation of Positive Streamer Corona in Low Thundercloud Fields. – Geophysical Research Letters, 2017, vol. 44(11), pp. 5758–5765, DOI:10.1002/2017GL073107.
38. Cai Q., Jansky J., Pasko V.P. Initiation of streamers due to hydrometeor collisions in thunderclouds. – Journal of Geophysical Research: Atmospheres, 2018, vol. 123(14), pp. 7050–7064, DOI:10.1029/2018JD028407.
39. Babich L.P., et al. Positive Streamer Initiation from Raindropsin Thundercloud Fields. – Journal of Geophysical Research: Atmospheres, 2016, vol. 121(11), pp. 6393–6403, DOI:10.1002/2016JD024901.
40. Babich L.P., Bochkov E.I. Initiation of Positive Streamers near Uncharged Ice Hydrometeors in the Thundercloud Field. – Plasma Physics Reports, 2018, vol. 44(5), pp. 533–538, DOI:10.1134/S1063780X18050033.
41. Liu N., et al. Formation of Streamer Discharges from an Isolated Ionization Column at Subbreakdown Conditions. – Physical Review Letters, 2012, vol. 109(2), p. 025002, DOI:10.1103/PhysRevLett.109.025002.
42. Shi F., Liu N., Rassoul H.K. Properties of Relatively Long Streamers Initiated from an Isolated Hydrometeor. – Journal of Geophysical Research: Atmospheres, 2016, vol. 121(12), pp. 7284–7295, DOI:10.1002/2015JD024580.
43. Kostinskiy A.Yu., Marshall T.C., Stolzenburg M. The Mechanism of the Origin and Development of Lightning from Initia-ting Event to Initial Breakdown Pulses (v.2). – Journal of Geophysical Research: Atmospheres, 2020, vol. 125(22), p. e2020JD033191.
44. Kostinskiy A.Yu., et al. Observation of a New Class of Electric Discharges within Artificial Clouds of Charged Water Droplets and Its Implication for Lightning Initiation within Thunderclouds. – Geophysical Research Letters, 2015, vol. 42, pp. 8165–8171, DOI:10.1002/2015GL065620.
45. Rison W., et al. Observations of Narrow Bipolar Events Reveal How Lightning is Initiated in Thunderstorms. – Nature Communications, 2016, vol. 7, p. 10721, DOI:10.1038/ncomms10721.
46. Aleksandrov N.L., Bazelyan E.M. Simulation of Long-Streamer Propagation in Air at Atmospheric Pressure. – Journal of Physics D: Applied Physics, 1996, vol. 29(3), pp. 740–752, DOI:10.1088/0022-3727/29/3/035.
47. Tilles J.N., et al. Fast Negative Breakdown in Thunderstorms. – Nature Communications, 2019, vol. 10 (1), p. 1648, DOI:10. 1038/s41467-019-09621-z.
48. Attanasio A., Krehbiel P.R., da Silva C.L. Griffiths and Phelps Lightning Initiation Model, Revisited. – Journal of Geophysical Research: Atmospheres, 2019, vol. 124(14), pp. 8076–8094, DOI:10. 1029/2019JD030399.
49. Cooray V., et al. Modeling Compact Intracloud Discharge (CID) as a Streamer Burst. – Atmosphere, 2020, vol. 11(5), p. 549, DOI:10.3390/atmos11050549.
50. Attanasio A., da Silva C.L., Krehbiel P. Electrostatic Conditions that Produce Fast Breakdown in Thunderstorms. – Journal of Geophysical Research: Atmospheres, 2021, vol. 126, DOI:10. 1029/2021JD034829.
51. Lyu F., et al. Lightning Initiation Processes Imaged with Very High Frequency Broadband Interferometry. – Journal of Geophysical Research: Atmospheres, 2019, vol. 124(6), pp. 2994–3004, DOI:10.1029/2018JD029817.
52. Liu N., et al. Implications of Multiple Corona Bursts in Lightning Processes for Radio Frequency Interferometer Observations. – Geophysical Research Letters, 2022, vol. 49 (7), DOI:10.1029/2021GL097367.
53. Иудин Д.И. Зарождение молниевого разряда как индуцированный шумом кинетический переход. – Известия вузов. Радиофизика, 2017, т. 60, № 5, c. 418–441.
54. Iudin D.I., et al. Formation of Decimeter-Scale, Long-Lived Elevated Ionic Conductivity Regions in Thunderclouds. – NPJ Clim Atmos Sci., 2019, vol. 2(46), pp. 1–10.
55. Iudin D.I., et al. From Decimeter-Scale Elevated Ionic Conductivity Regions in the Cloud to Lightning Initiation. – Scientific Reports, 2021, vol. 11(1), p. 18016, DOI:10.1038/s41598-021-97321-4.
56. Булатов А.А., Иудин Д.И., Сысоев А.А. Самоорганизующаяся транспортная модель искрового разряда в грозовом облаке. – Известия вузов. Радиофизика, 2020, т. 63, № 2, с. 125–154.
57. Булатов А.А., Сысоев А.А., Иудин Д.И. Моделирование инициации молнии на базе динамического графа. – Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 125–147.
58. Iudin D.I., et al. Noise-Induced Kinetic Transition in Two-Component Environment. – Journal of Computational and Applied Mathematics, 2021, vol. 388 (5), DOI:10.1016/j.cam.2020.113268.
59. Syssoev A., et al. On the Problem of Critical Electric Field of Atmospheric Air. – Atmosphere, 2021, vol. 12(8), p. 1046, DOI:10.3390/atmos12081046.
60. Syssoev A.A., et al. Radiation Electric Field Produced by the Lightning Leader Formation in a Thundercloud: Observations and Modeling. – Journal of Atmospheric and Solar-Terrestrial Physics, 2021, vol. 221, DOI:10.1016/j.jastp.2021.105686.
61. Syssoev A.A., et al. Relay Charge Transport in Thunderclouds and Its Role in Lightning Initiation. – Scientific Reports, 2022, vol. 12(1), p. 7090, DOI:10.1038/s41598-022-10722-x.
62. Iudin D.I., Syssoev A.A. Hot Plasma Channel Network Formation in Thunderclouds. – Journal of Atmospheric and Solar-Terrestrial Physics, 2022, vol. 240, p. 105944, DOI: 10.1016/j.jastp. 2022.105944.
63. Райзер Ю.П. Физика газового разряда. Долгопрудный: Издательский Дом «Интеллект», 2009, 736 с.
64. Pancheshnyi S. Effective Ionization Rate in Nitrogen-Oxygen Mixtures. – Journal of Physics D: Applied Physics, 2013, vol. 46(15), DOI:10.1088/0022-3727/46/15/155201.
65. Da Silva C.L., Pasko V.P. Dynamics of Streamer-to-Leader Transition at Reduced Air Densities and Its Implications for Propagation of Lightning Leaders and Gigantic Jets. – Journal of Geophysical Research: Atmospheres, 2013, vol. 118(24), pp. 13561–13590.
66. Popov N.A. Evolution of the Negative Ion Composition in the Afterglow of a Streamer Discharge in Air. – Plasma Physics Reports, 2010, vol. 36(9), pp. 812–818, DOI:10.1134/S1063780X10090084.
67. Allen N.L., et al. Effects of Humidity on Corona Inception in a Diverging Electric Field. – IEE PROC, 1981, vol. 128(8), pp. 565–570.
68. Abdel-Salam M. High-Voltage Engineering: Theory and Practice. Marcel Dekker, New York, 2000, 725 p.
69. Popov N.A. Pulsed Nanosecond Discharge in Air at High Specific Deposited Energy: Fast Gas Heating and Active Particle Production. – Plasma Sources Science and Technology, 2016, vol. 25(4), DOI:10.1088/0963-0252/25/4/044003.
70. Seeger M., et al. Investigation of the Dielectric Recovery in Synthetic Air in a High Voltage Circuit Breaker. – Journal of Physics D: Applied Physics, 2005, vol. 38(11), pp. 1795–1804, DOI:10.1088/0022-3727/38/11/020.
71. Capitelli M., et al. Plasma Kinetics in Atmospheric Gases. New York: Springer-Verlag, 2000, 316 p.
72. Luque A., Gordillo-Vazquez F.J. Mesospheric Electric Breakdown and Delayed Sprite Ignition Caused by Electron Detachment. – Nature Geoscience, 2012, vol. 5(1), pp. 22–25, DOI:10.1038/ngeo1314.
73. Neubert T., Chanrion O. On the Electric Breakdown Field of the Mesosphere and the Influence of Electron Detachment. – Geophysical Research Letters, 2013, vol. 40(10), pp. 2373–2377, DOI:10.1002/grl.50433.
74. Liu N. Multiple Ion Species Fluid Modeling of Sprite Halos and the Role of Electron Detachment of O– in Their Dynamics. – Journal of Geophysical Research: Atmospheres, 2012, vol. 117(A3), DOI:10.1029/2011JA017062.
75. Александров А.Ф. и др. Ионизация воздуха в околокритическом электрическом поле. – Журнал технической физики, 2006, т. 76, № 3, с. 38–43.
76. Chachereau A., Pancheshnyi S. Calculation of the Effective Ionization Rate in air by Considering Electron Detachment from Negative Ions. – IEEE Transactions on Plasma Science, 2014, vol. 42(10), pp. 3328–3338, DOI:10.1109/TPS.2014.2354676.
77. Karunarathna N., et al. Initiation Locations of Lightning Flashes Relative to Radar Reflectivity in Four Small Florida Thunderstorms. – Journal of Geophysical Research: Atmospheres, 2017, vol. 122(12), pp. 6565–6591
#
1. Rakov V.A., Uman M.A. Lightning: Physics and Effects. New York: Cambridge University Press, 2003, 687 p.
2. Bazelyan E.M., Rayzer Yu.P. Fizika molnii i molniezashchity (Lightning Physics and Lightning Protection). М.: Fizmatlit, 2001, 320 p.
3. Dement'eva S.О., et al. Izvestiya RAN. Fizika atmosfery i okeana – in Russ. (News of the Russian Academy of Sciences. Atmospheric and Oceanic Physics), 2020, vol. 56, No. 2, pp. 150–157.
4. Romps D.M., et al. Projected Increase in Lightning Strikes in the United States Due to Global Warming. – Science, 2014, vol. 346(6211), pp. 851–854, DOI:10.1126/science.1259100.
5. Bazelyan E.M., Rayzer Yu.P. Uspekhi fizicheskih nauk – in Russ. (Successes of Physical Sciences), 2000, vol. 170, No. 7, pp. 753–769.
6. Smorgonskiy A., et al. Are Standardized Lightning Current Waveforms Suitable for Aircraft and Wind Turbine Blades Made of Composite Materials? – IEEE Transactions on Electromagnetic Compatibility, 2017, vol. 59(4), pp. 1320–1328, DOI:10.1109/TEMC.2017.2682324.
7. Franklin B. A Letter of Benjamin Franklin, Esq; to Mr. Peter Collinson, F.R.S. Concerning an Electrical Kite. – Philos. Trans. (1683–1775), 1753, vol. 47, pp. 565–567.
8. Dwyer J.R., Uman M.A. The Physics of Lightning. – Physics Reports, 2014, vol. 534(4), pp. 147–241, DOI:10.1016/j.physrep.2013.09.004.
9. Gorin B.N., Levitov V.I., Shkilev A.V. Some Principles of Leader Discharge of Air Gaps with a Strong Non-Uniform Field. – IEE Conf. Publ., 1976, vol. 143, pp. 274–278.
10. Malagon-Romero A., Luque A. Spontaneous Emergence of Space Stems Ahead of Negative Leaders in Lightning and Long Sparks. – Geophysical Research Letters, 2019, vol. 46(7), pp. 4029–4038, DOI:10.1029/2019GL082063.
11. Syssoev A.A., Iudin D.I. On a Possible Mechanism of Space Stem Formation at the Negative Corona Streamer Burst Periphery. – Atmospheric Research, 2021, vol. 259, DOI: 10.1016/j.atmosres.2021.105685.
12. Rakov V.A. A Review of Positive and Bipolar Lightning Discharges. – Bulletin of the American Meteorological Society, 2003, vol. 84(6), pp. 767–776, DOI:10.1175/BAMS-84-6-767.
13. Kostinskiy A.Yu., et al. Abrupt Elongation (Stepping) of Negative and Positive Leaders Culminating in an Intense Corona Streamer Burst: Observations in Long Sparks and Implications for Lightning. – Journal of Geophysical Research: Atmospheres, 2018, vol. 123(10), pp. 5360–5375, DOI:10.1029/2017JD027997.
14. Huang S., et al. Separate Luminous Structures Leading Positive Leader Steps. – Nature Communications, 2022, vol. 13, p. 3655, DOI:10.1038/s41467-022-31409-x.
15. Saba M.M.F., et al. Positive Leader Characteristics from High-Speed Video Observations. – Geophysical Research Letters, 2008, vol. 35(7), p. L07802, DOI:10.1029/2007GL033000.
16. Mazur V., et al. Recoil Leader Formation and Development. – Journal of Electrostatics, 2013, vol. 71(4), pp. 763–768, DOI:10.1016/j.elstat.2013.05.001.
17. Van der Velde O.A., Montanya J. Asymmetries in Bidirectional Leader Development of Lightning Flashes. – Journal of Geophysical Research: Atmospheres, 2013, vol. 118(24), pp. 13504–13519, DOI:10.1002/2013JD020257.
18. Yuan S., et al. Development of Side Bidirectional Leader and Its Effect on Channel Branching of the Progressing Positive Leader of Lightning. – Geophysical Research Letters, 2019, vol. 46(3), pp. 1746-1753, DOI:10.1029/2018GL080718.
19. Montanya J., Van der Velde O.A., Williams E.R. The Start of Lightning: Evidence of Bidirectional Lightning Initiation. – Scientific Reports, 2015, vol. 5, p. 15180, DOI:10.1038/srep15180.
20. Warner T.A., et al. Observations of Bidirectional Lightning Leader Initiation and Development Near Positive Leader Channels. – Journal of Geophysical Research: Atmospheres, 2016, vol. 121(15), pp. 9251–9260, DOI:10.1002/2016JD025365.
21. Imyanitov I.M., Chubarina E.V. Elektrichestvo svobodnoy atmosfery (Electricity of the Free Atmosphere). L.: Gidrometeoizdat, 1965, 240 p.
22. Imyanitov I.M., Chubarina E.V., Shvarts Ya.М. Elektrichestvo oblakov (Electricity in Clouds). L.: Gidrometeoizdat, 1970, 91 p.
23. Imyanitov I.М. Pribory i metody dlya izucheniya elektrichestva atmosfery (Instrumentation and Methods for Studying the Electricity of the Atmosphere). М.: Gostekhizdat, 1957, 483 p.
24. Winn W.P., Schwede G.W., Moore C.B. Measurements of Electric Fields in Thunderclouds. – Journal of Geophysical Research, 1974, vol. 79, pp. 1761–1767, DOI: 10.1029/JC079I012P01761.
25. Bazelyan E.M., Rayzer Yu.P. Iskrovoy razryad (Spark Dis-charge). М.: МFТI, 1997, 320 p.
26. Loeb L.B. The Mechanisms of Stepped and Dart Leaders in Cloud-to-Ground Lightning Strokes. – Journal of Geophysical Research, 1966, vol. 71(20), pp. 4711–4721.
27. Phelps C.T. Positive Streamer System Intensification and Its Possible Role in Lightning Initiation. – Journal of Atmospheric and Solar-Terrestrial Physics, 1974, vol. 36(1), pp. 103–111.
28. Griffiths R.F., Phelps C.T. A Model for Lightning Initiation Arising from Positive Corona Streamer Development. – Journal of Geophysical Research, 1976, vol. 81(21), pp. 3671–3676, DOI: 10.1029/JC081I021P03671.
29. Gurevich A.V., Milikh G.M., Roussel-Dupre R. Runaway Electron Mechanism of Air Breakdown and Preconditioning during a Thunderstorm. – Physics Letters A, 1992, vol. 165(5–6), pp. 463–468, DOI:10.1016/0375-9601(92)90348-P.
30. Gurevich A.V., Zybin K.P., Roussel-Dupre R.A. Lightning Initiation by Simultaneous Effect of Runaway Breakdown and Cosmic Ray Showers. – Physics Letters A, 1999, vol. 254(1–2), pp. 79–87, DOI: 10.1016/S0375-9601(99)00091-2.
31. Gurevich A.V., Zybin K.P. Uspekhi fizicheskih nauk – in Russ. (Successes of Physical Sciences), 2001, vol. 171, No. 11, pp. 1177–1199.
32. Dwyer J.R. The Initiation of Lightning By Runaway Air Breakdown. – Geophysical Research Letters, 2005, vol. 32(20), p. L20808, DOI:10.1029/2005GL023975.
33. Hare B.M., et al. Do Cosmic Ray Air Showers Initiate Light-ning? A Statistical Analysis of Cosmic Ray Air Showers and Lightning Mapping Array Data. – Journal of Geophysical Research: Atmospheres, 2017, vol. 122(15), pp. 8173–8186, DOI:10.1002/2016JD025949.
34. Petersen D., et al. A Brief Review of the Problem of Light-ning Initiation and a Hypothesis of Initial Lightning Leader Formation. – Journal of Geophysical Research, 2008, vol. 113(D17), p. D17205, DOI:10.1029/2007JD009036.
35. Sadighi S., et al. Streamer Formation and Branching from Model Hydrometeors in Subbreakdown Conditions Inside Thunderclouds. – Journal of Geophysical Research: Atmospheres, 2015, vol. 120(9), pp. 3660–3678, DOI:10.1002/2014JD022724.
36. Dubinova A., et al. Prediction of Lightning Inception by Large Ice Particles and Extensive Air Showers. – Physical Review Letters, 2015, vol. 115(1), p. 015002, DOI:10.1103/PhysRevLett.115.015002.
37. Cai Q., Jansky J., Pasko V.P. Initiation of Positive Streamer Corona in Low Thundercloud Fields. – Geophysical Research Letters, 2017, vol. 44(11), pp. 5758–5765, DOI:10.1002/2017GL073107.
38. Cai Q., Jansky J., Pasko V.P. Initiation of streamers due to hydrometeor collisions in thunderclouds. – Journal of Geophysical Research: Atmospheres, 2018, vol. 123(14), pp. 7050–7064, DOI:10.1029/2018JD028407.
39. Babich L.P., et al. Positive Streamer Initiation from Raindrops in Thundercloud Fields. – Journal of Geophysical Research: Atmospheres, 2016, vol. 121(11), pp. 6393–6403, DOI:10.1002/2016JD024901.
40. Babich L.P., Bochkov E.I. Initiation of Positive Streamers near Uncharged Ice Hydrometeors in the Thundercloud Field. – Plasma Physics Reports, 2018, vol. 44(5), pp. 533–538, DOI:10.1134/S1063780X18050033.
41. Liu N., et al. Formation of Streamer Discharges from an Isolated Ionization Column at Subbreakdown Conditions. – Physical Review Letters, 2012, vol. 109(2), p. 025002, DOI:10.1103/Phys RevLett.109.025002.
42. Shi F., Liu N., Rassoul H.K. Properties of Relatively Long Streamers Initiated from an Isolated Hydrometeor. – Journal of Geophysical Research: Atmospheres, 2016, vol. 121(12), pp. 7284–7295, DOI:10.1002/2015JD024580.
43. Kostinskiy A.Yu., Marshall T.C., Stolzenburg M. The Mechanism of the Origin and Development of Lightning from Initiating Event to Initial Breakdown Pulses (v.2). – Journal of Geophysical Research: Atmospheres, 2020, vol. 125(22), p. e2020JD033191.
44. Kostinskiy A.Yu., et al. Observation of a New Class of Electric Discharges within Artificial Clouds of Charged Water Droplets and Its Implication for Lightning Initiation within Thunder-clouds. – Geophysical Research Letters, 2015, vol. 42, pp. 8165–8171, DOI:10.1002/2015GL065620.
45. Rison W., et al. Observations of Narrow Bipolar Events Reveal How Lightning is Initiated in Thunderstorms. – Nature Communications, 2016, vol. 7, p. 10721, DOI:10.1038/ncomms10721.
46. Aleksandrov N.L., Bazelyan E.M. Simulation of Long-Streamer Propagation in Air at Atmospheric Pressure. – Journal of Physics D: Applied Physics, 1996, vol. 29(3), pp. 740–752, DOI:10.1088/0022-3727/29/3/035.
47. Tilles J.N., et al. Fast Negative Breakdown in Thunderstorms. – Nature Communications, 2019, vol. 10 (1), p. 1648, DOI:10. 1038/s41467-019-09621-z.
48. Attanasio A., Krehbiel P.R., da Silva C.L. Griffiths and Phelps Lightning Initiation Model, Revisited. – Journal of Geophysical Research: Atmospheres, 2019, vol. 124(14), pp. 8076–8094, DOI:10. 1029/2019JD030399.
49. Cooray V., et al. Modeling Compact Intracloud Discharge (CID) as a Streamer Burst. – Atmosphere, 2020, vol. 11(5), p. 549, DOI:10.3390/atmos11050549.
50. Attanasio A., da Silva C.L., Krehbiel P. Electrostatic Conditions that Produce Fast Breakdown in Thunderstorms. – Journal of Geophysical Research: Atmospheres, 2021, vol. 126, DOI:10. 1029/2021JD034829.
51. Lyu F., et al. Lightning Initiation Processes Imaged with Very High Frequency Broadband Interferometry. – Journal of Geophysical Research: Atmospheres, 2019, vol. 124(6), pp. 2994–3004, DOI:10.1029/2018JD029817.
52. Liu N., et al. Implications of Multiple Corona Bursts in Lightning Processes for Radio Frequency Interferometer Observations. – Geophysical Research Letters, 2022, vol. 49 (7), DOI:10.1029/2021GL097367.
53. Iudin D.I. Izvestiya vuzov. Radiofizika – in Russ. (News of Universities. Radiophysics), 2017, vol. 60, No. 5, pp. 418–441.
54. Iudin D.I., et al. Formation of Decimeter-Scale, Long-Lived Elevated Ionic Conductivity Regions in Thunderclouds. – NPJ Clim Atmos Sci., 2019, vol. 2(46), pp. 1–10.
55. Iudin D.I., et al. From Decimeter-Scale Elevated Ionic Conductivity Regions in the Cloud to Lightning Initiation. – Scientific Reports, 2021, vol. 11(1), p. 18016, DOI:10.1038/s41598-021-97321-4.
56. Bulatov A.A., Iudin D.I., Sysoev А.А. Izvestiya vuzov. Radiofizika – in Russ. (News of Universities. Radiophysics), 2020, vol. 63, No. 2, pp. 125–154.
57. Bulatov А.А., Sysoev А.А., Iudin D.I. Komp'yuternye issledovaniya i modelirovanie – in Russ. (Computer Research and Modeling), 2021, vol. 13, No. 1, pp. 125–147.
58. Iudin D.I., et al. Noise-Induced Kinetic Transition in Two-Component Environment. – Journal of Computational and Applied Mathematics, 2021, vol. 388 (5), DOI:10.1016/j.cam.2020.113268.
59. Syssoev A., et al. On the Problem of Critical Electric Field of Atmospheric Air. – Atmosphere, 2021, vol. 12(8), p. 1046, DOI:10.3390/atmos12081046.
60. Syssoev A.A., et al. Radiation Electric Field Produced by the Lightning Leader Formation in a Thundercloud: Observations and Modeling. – Journal of Atmospheric and Solar-Terrestrial Physics, 2021, vol. 221, DOI:10.1016/j.jastp.2021.105686.
61. Syssoev A.A., et al. Relay Charge Transport in Thunderclouds and Its Role in Lightning Initiation. – Scientific Reports, 2022, vol. 12(1), p. 7090, DOI:10.1038/s41598-022-10722-x.
62. Iudin D.I., Syssoev A.A. Hot Plasma Channel Network Formation in Thunderclouds. – Journal of Atmospheric and Solar-Terrestrial Physics, 2022, vol. 240, p. 105944, DOI: 10.1016/j.jastp.2022.105944.
63. Rayzer Yu.P. Fizika gazovogo razryada (Physics of the Gas Discharge). Dolgoprudnyy: Izdatel'skiy Dom «Intellekt», 2009, 736 p.
64. Pancheshnyi S. Effective Ionization Rate in Nitrogen-Oxygen Mixtures. – Journal of Physics D: Applied Physics, 2013, vol. 46(15), DOI:10.1088/0022-3727/46/15/155201.
65. Da Silva C.L., Pasko V.P. Dynamics of Streamer-to-Leader Transition at Reduced Air Densities and Its Implications for Propagation of Lightning Leaders and Gigantic Jets. – Journal of Geophysical Research: Atmospheres, 2013, vol. 118(24), pp. 13561–13590.
66. Popov N.A. Evolution of the Negative Ion Composition in the Afterglow of a Streamer Discharge in Air. – Plasma Physics Reports, 2010, vol. 36(9), pp. 812–818, DOI:10.1134/S1063780X10090084.
67. Allen N.L., et al. Effects of Humidity on Corona Inception in a Diverging Electric Field. – IEE PROC, 1981, vol. 128(8), pp. 565–570.
68. Abdel-Salam M. High-Voltage Engineering: Theory and Practice. Marcel Dekker, New York, 2000, 725 p.
69. Popov N.A. Pulsed Nanosecond Discharge in Air at High Specific Deposited Energy: Fast Gas Heating and Active Particle Production. – Plasma Sources Science and Technology, 2016, vol. 25(4), DOI:10.1088/0963-0252/25/4/044003.
70. Seeger M., et al. Investigation of the Dielectric Recovery in Synthetic Air in a High Voltage Circuit Breaker. – Journal of Physics D: Applied Physics, 2005, vol. 38(11), pp. 1795–1804, DOI:10.1088/0022-3727/38/11/020.
71. Capitelli M., et al. Plasma Kinetics in Atmospheric Gases. New York: Springer-Verlag, 2000, 316 p.
72. Luque A., Gordillo-Vazquez F.J. Mesospheric Electric Breakdown and Delayed Sprite Ignition Caused by Electron Detachment. – Nature Geoscience, 2012, vol. 5(1), pp. 22–25, DOI:10.1038/ngeo1314.
73. Neubert T., Chanrion O. On the Electric Breakdown Field of the Mesosphere and the Influence of Electron Detachment. – Geophysical Research Letters, 2013, vol. 40(10), pp. 2373–2377, DOI:10.1002/grl.50433.
74. Liu N. Multiple Ion Species Fluid Modeling of Sprite Halos and the Role of Electron Detachment of O– in Their Dynamics. – Journal of Geophysical Research: Atmospheres, 2012, vol. 117(A3), DOI:10.1029/2011JA017062.
75. Aleksandrov A.F., et al. Zhurnal tekhnicheskoy fiziki – in Russ. (Journal of Technical Physics), 2006, vol. 76, No. 3, pp. 38–43.
76. Chachereau A., Pancheshnyi S. Calculation of the Effective Ionization Rate in air by Considering Electron Detachment from Negative Ions. – IEEE Transactions on Plasma Science, 2014, vol. 42(10), pp. 3328–3338, DOI:10.1109/TPS.2014.2354676.
77. Karunarathna N., et al. Initiation Locations of Lightning Flashes Relative to Radar Reflectivity in Four Small Florida Thunderstorms. – Journal of Geophysical Research: Atmospheres, 2017, vol. 122(12), pp. 6565–6591