Increasing the Short-Circuit Capacity of Impact-Excited Generators to Ensure the Required Operation Modes

  • Vladimir N. ZHELEZNYAK
  • Nikolay V. KOROVKIN
Keywords: impact-excited turbine generator, short-circuit power, modeling power, test center, subtransient reactance, transient reactance, optimization method, operation modes

Abstract

Impact-excited turbine generators are installed in high-power laboratories of test centers for testing various electrical equipment and ensuring the necessary short-circuit power. Tests of high-capacity electrical power equipment require an increase in the short-circuit power of existing impact-excited turbine generators. The article discusses the experience gained from designing and manufacturing impact-excited generators. The main ways of increasing the capacity of impact-excited generators and related limitations are described. A method and criteria for optimizing the parameters of impact-excited turbine generators and their basic dimensions to ensure certain operation modes in which electrical equipment is tested at test centers are given. The ways of reducing the subtransient reactance, which determines the peak short-circuit current and peak short-circuit power of impact-excited generators, are considered.

Author Biographies

Vladimir N. ZHELEZNYAK

(JSC “Power machines” Production Facility “Electrosila”, St. Petersburg, Russia) – Head of the Calculation Dept

Nikolay V. KOROVKIN

(Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia) –Professor of the Higher School of High Voltage Energy, Dr.Sci. (Eng.

References

1. Энергетическая стратегия Российской Федерации на период до 2035 года (утв. распоряжением Правительства РФ от 09.06.2020 г. № 1523-р, 92 с.
2. Пинчук Н.Д., Сокур П.В. Электрические машины для повышения надежности и устойчивости электрических сетей. – Сб. докладов научно-техн. конф.: Актуальные вопросы и перспективы развития электромашиностроения. М., 2016, с. 83–89.
3. Investing in Innovation S&C Electric Company’s Advanced Technology Center [Электрон. ресурс], URL https://energy.ece.illinois.edu (дата обращения 26.07.2022).
4. Шилин Н.В. Научно-исследовательский центр по испытанию высоковольтной аппаратуры. – Электричество, 1967, № 9, с. 1–11.
5. Федченко И.К. Техника высоких напряжений. Киев: Вища школа, 1969, 544 с.
6. Лютер Р.А. Параметры синхронной машины с учетом насыщения. – Сборник «Электросила», 1951, № 10, с. 30–36.
7. ГОСТ IEC 60034-3-2015. Машины электрические вращающиеся. Часть 3. Специальные требования для синхронных генераторов, приводимых паровыми турбинами и турбинами на сжатом газе. М.: Стандартинформ, 2016, 20 с.
8. Титов В.В. и др. Турбогенераторы. Расчет и конструкция. Л.: Энергия, 1967, 895 с.
9. Хуторецкий Г.М., Токов М.И., Толвинская Е.В. Проектирование турбогенераторов. Л.: Энергоатомиздат, 1987, 256 с.
10. Вольдек А.И., Попов В.В. Электрические машины. Машины переменного тока. СПб.: Питер, 2008, 350 с.
11. ГОСТ IEC 60034-1-2014. Машины электрические вращающиеся. Часть 1. Номинальные значения параметров и эксплуатационные характеристики. М.: Стандартинформ, 2015, 62 с.
12. Zheleznyak V.N., Korovkin N.V. Short-Circuit Turbogenerators: Ways of Short-Circuit Power Increase for Modern Testing Facilities Operation. – 2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering, 2022, pp. 1307-1310.
13. ГОСТ 8865-93. Системы электрической изоляции. Оценка нагревостойкости и классификация. Минск: ИПК Издательство стандартов, 2003, 6 с.
14. Belyaev N.A., et al. Reduction of Active Power Losses in Electric Power Systems with Optimal Placement of FACTS Devices. – IEEE North West Russia Section Young Researchers in Electrical and Electronic Engineering Conference, 2015, pp. 150–154, DOI:10.1109/EIConRusNW.2015.7102251.
15. Беляев Н.А. и др. Использование билинейной теоремы для решения задач оптимизации потоков мощностей в энергосистемах. – Электротехнические комплексы и системы управления, 2012, № 1, c. 77–80.
16. Deb К. Multi-Objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems. – Evolutionary Computation, 1999, 7(3), pp. 205–230.
17. Adalev A.S., et al. Deembedding and unterminating microwave fixtures with the genetic algorithm. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, No. 7, pp. 3131–3139, DOI:10.1109/TMTT.2006.877063.
18. Коровкин Н.В., Марков М.А. Оптимизация параметров турбогенератора ТВВ-360 по векторному критерию качества. – Известия РАН. Энергетика, 2020, № 4, c. 49–54.
19. Cui S., et al. Anti-Shock Analysis of the Electromagnetic Launched Projectile Powered by the Pulsed Alternator. – 19th IEEE Pulsed Power Conference (PPC), 2013, DOI: 10.1109/PPC.2013.6627464.
20. Aubert G., et al. Quasi-Stationary Magnetic Fields of 60 T Using Inductive Energy Storage. – IEEE Transactions on Applied Superconductivity, 2002, vol. 12, No. 1, pp. 703–706, DOI: 10.1109/TASC.2002.1018498.
21. Moskalev V., Pustynnikov S., Sergeev G. Power Pulse Generator with the Inductive Energy Storage Unit. – 7th Korea-Russia International Symposium on Science and Technology, Proceedings KORUS 2003. (IEEE Cat. No.03EX737), 2003, vol.3, pp. 57–59.
#
1. Energeticheskaya strategiya Rossiyskoy Federatsii na period do 2035 goda (utv. rasporyazheniem Pravitel'stva RF ot 09.06.2020 g. № 1523-r (Energy Strategy of the Russian Federation for the Period up to 2035 (Approved by the Decree of the Government of the Russian Federation dated 09.06.2020 No. 1523-r), 92 p.
2. Pinchuk N.D., Sokur P.V. Cb. dokladov nauchno-tekhn. konf.: Aktual'nye voprosy i perspektivy razvitiya elektromashinostroeniya – in Russ. (Collection of Scientific and Technical Reports. Conf.: Current Issues and Prospects for the Development of Electric Machine Industry). М., 2016, pp. 83–89.
3. Investing in Innovation S&C Electric Company’s Advanced Technology Center [Electron. resource], URL https://energy.ece.illinois.edu (Date of appeal 26.07.2022).
4. Shilin N.V. Elektrichestvo – in Russ. (Electricity), 1967, No. 9, pp. 1–11.
5. Fedchenko I.К. Tekhnika vysokih napryazheniy (High Voltage Technology). Kiev: Vishcha shkola, 1969, 544 p.
6. Lyuter R.А. Sbornik «Elektrosila» – in Russ. (Collection "Electrosila"), 1951, No.10, pp. 30–36.
7. GОSТ IEC 60034-3-2015. Mashiny elektricheskie vrashchayu-shchiesya. Chast' 3. Spetsial'nye trebovaniya dlya sinhronnyh generatorov, privodimyh parovymi turbinami i turbinami na szhatom gaze (Rotating Electrical Machines. Part 3 Specific Requirements for Synchronous Generators Driven by Steam Turbines or Combustion Gas Turbines). М.: Standartinform, 2016, 20 p.
8. Titov V.V., et al. Turbogeneratory. Raschet i konstruktsiya (Turbo Generators. Calculation and Construction). L.: Energiya, 1967, 895 p.
9. Hutoretskiy G.M., Tokov M.I., Tolvinskaya E.V. Proektirovanie turbogeneratorov (Design of Turbo generators). L.: Energoatomizdat, 1987, 256 p.
10. Vol'dek A.I., Popov V.V. Elektricheskie mashiny. Mashiny peremennogo toka (Electric Machines. AC Machines). SPb.: Piter, 2008, 350 p.
11. GОSТ IEC 60034-1-2014. Mashiny elektricheskie vrashchayu-shchiesya. Chast' 1. Nominal'nye znacheniya parametrov i ekspluatatsionnye harakteristiki (Rotating Electrical Machines. Part 1 Rating and Performance). М.: Standartinform, 2015, 62 p.
12. Zheleznyak V.N., Korovkin N.V. Short-Circuit Turbogene-rators: Ways of Short-Circuit Power Increase for Modern Testing Facilities Operation. – 2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering, 2022, pp. 1307-1310.
13. GОSТ 8865-93. Sistemy elektricheskoy izolyatsii. Otsenka nagrevostoykosti i klassifikatsiya (Electrical Insulation Systems. Thermal Evalution and Classification). Minsk: IPK Izdatel'stvo standartov, 2003, 6 p.
14. Belyaev N.A., et al. Reduction of Active Power Losses in Electric Power Systems with Optimal Placement of FACTS Devices. – IEEE North West Russia Section Young Researchers in Electrical and Electronic Engineering Conference, 2015, pp. 150–154, DOI:10.1109/EIConRusNW.2015.7102251.
15. Belyaev N.A., et al. Elektrotekhnicheskie kompleksy i sistemy upravleniya – in Russ. (Electrical Complexes and Control Systems), 2012, No. 1, pp. 77–80.
16. Deb К. Multi-Objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems. – Evolutionary Computation, 1999, 7(3), pp. 205–230.
17. Adalev A.S., et al. Deembedding and unterminating microwave fixtures with the genetic algorithm. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, No. 7, pp. 3131–3139, DOI:10.1109/TMTT.2006.877063.
18. Korovkin N.V., Markov М.А. Izvestiya RAN. Energetika – in Russ. (News of the RAS. Power Engineering), 2020, No. 4, pp. 49–54.
19. Cui S., et al. Anti-Shock Analysis of the Electromagnetic Launched Projectile Powered by the Pulsed Alternator. – 19th IEEE Pulsed Power Conference (PPC), 2013, DOI: 10.1109/PPC.2013.6627464.
20. Aubert G., et al. Quasi-Stationary Magnetic Fields of 60 T Using Inductive Energy Storage. – IEEE Transactions on Applied Superconductivity, 2002, vol. 12, No. 1, pp. 703–706, DOI: 10.1109/TASC.2002.1018498.
21. Moskalev V., Pustynnikov S., Sergeev G. Power Pulse Generator with the Inductive Energy Storage Unit. – 7th Korea-Russia International Symposium on Science and Technology, Proceedings KORUS 2003. (IEEE Cat. No.03EX737), 2003, vol.3, pp. 57–59
Published
2022-09-29
Section
Article