Installation for Treatment of Oncological Diseases Based on a Pulsed Electromagnetic Field

  • Natal'ya S. PODOL'SKAYA
  • Kseniya A. ZAGORODNEVA
  • Vladimir A. POPOV
Keywords: electromagnetic field, oncology treatment method, magnetic field strength, current density in an inductor

Abstract

The article is devoted to studying the pulsed electromagnetic field impact on oncological cells. The classification of electromagnetic fields used in medicine is given. The scheme and operation principle of the installation for generating a pulsed electromagnetic field are described. The results of calculating the installation parameters and the effect the electromagnetic field generated by the installation has on biological cells are presented. To prepare a series of experiments on the installation, a magnetic field propagation model in various operating modes is constructed. Models of current density propagation in the inductor and magnetic field induction on analogs of biological cells are presented. The results of calculations and modeling have been confirmed by field experiments on copper and brass plates, which are analogs of healthy and oncological biological cells. Conclusions about the applicability of a pulsed electromagnetic field as a method of treating oncological diseases and its advantages have been drawn.

Author Biographies

Natal'ya S. PODOL'SKAYA

(Moscow Aviation Institute (The National Research University), Moscow, Russia) – Senior Lecturer of the Electric Power, Electromechanical and Biotechnical Systems Dept

Kseniya A. ZAGORODNEVA

(Moscow Aviation Institute (The National Research University), Moscow, Russia) – Student of the Electric Power, Electromechanical and Biotechnical Systems Dept

Vladimir A. POPOV

(Joint Stock Company "RAMEK-VS", St. Petersburg, Russia) – Head of the Vibration-Pulse Systems Dept

References

1. Чиссов В.И., Дарьялова С.Л. Онкология. М.: ГЭОТАР–Медиа, 2007, 560 с.
2. Беркутов А.М. и др. Системы комплексной электромагнитной терапии. М.: Лаб. базовых знаний: БИНОМ, 2000, 375 с.
3. Панасюк Ю.Н., Пудовкин А.П. Электромагнитные поля. Тамбов: Издательство ФГБОУ ВПО «ТГТУ». 2014, 96 с.
4. Бурдин В.В. Физика. Основы магнетизма. Пермь: Пермский национальный исследовательский политехнический университет, 2007, 253 с.
5. Кнопфель Г. Сверхсильные импульсные магнитные поля. М.: МИР, 1972, 392 с.
6. Улащик В.С. Некоторые итоги исследования противоопухолевого действия магнитных полей в эксперименте. – Вопросы курортологии, физиотерапии и лечебной физической культуры, 2015, № 4, с. 48–53.
7. Sengupta S., Balla V.K. A Review on the Use of Magnetic Fields and Ultrasound for Non-Invasive Cancer Treatment. – Journal of Advanced Research, 2018, No. 14, pp. 97–111, DOI: 10.1016/j.jare.2018.06.003.
8. Crocetti S., et al. Low Intensity and Frequency Pulsed Electromagnetic Fields Selectively Impair Breast Cancer Cell Viability. – PLoS ONE, 2013, vol. 8, No. 9, e72944, DOI:10.1371/journal.pone.0072944.
9. Ruiz Gomez M.J., et al. 25 Hz Electromagnetic Field Exposure Has no Effect on Cell Cycle Distribution and Apoptosis in U 937 and HCA-2/1cch Cells. – Bioelectrochemistry, 2001, vol. 53(1), pp. 137–140, DOI: 10.1016/s0302-4598(00)00119-7.
10. Simko M., et al. Effects of 50 Hz EMF Exposure in Micronucleus Formation and Apoptosis in Transformed and Nontransformed Human Cell Lines. – Bioelectromagnetics, 1998, vol.19(2), pp. 85–91.
11. Пат. RU2376043 С1. Способ подавления функций и разрушения клеток злокачественных опухолей / И.М. Донник, А.П. Волобуев, Е.Д. Усков, 2009.
12. Курушин А.А. Решение мультифизических СВЧ задач с помощью САПР COMSOL. М.: One-Book, 2016, 376 с.
13. Павлейно М.А. и др. Моделирование работы электрических схем в Simulink. Применение операционных усилителей для фильтрации, усиления и генерации сигналов. СПб.: Б.и., 2007, 210 с.
14. Polk C. CRC Handbook of Biological Effects of Electromagnetic Fields. EBook, 2019, 512 p., DOI:10.1201/9781351071017.
15. Kovalev К., Podolskaya N., Kolosov A. Modeling the Processes of Interaction of the Installation for Creating a Pulsed Electromagnetic Field with Biological Tissues. – Int. Conf. on Electrotechnical Complexes and Systems, Ufa, 2021, DOI: 10.1109/ICOECS52783.2021.9657280.
16. Podolskaya N., Kovalev К., Popov S. Studying the Applicability of a Pulsed Magnetic Field to Biological Tissues. – IOP Conference Series: Materials Science and Engineering, 2020, vol. 927, No. 1, DOI:10.1088/1757-899X/927/1/012065.
#
1. Chissov V.I., Dar'yalova S.L. Onkologiya (Oncology). М.: GEOTAR–Media, 2007, 560 p.
2. Berkutov А.М., et al. Sistemy kompleksnoy elektromagnitnoy terapii (Systems of Complex Electromagnetic Therapy). М.: Lab. bazovyh znaniy: BINOM, 2000, 375 p.
3. Panasyuk Yu.N., Pudovkin A.P. Elektromagnitnye polya (Electromagnetic Fields). Tambov: Izdatel'stvo FGBOU VPO «TGTU». 2014, 96 p.
4. Burdin V.V. Fizika. Osnovy magnetizma (Physics. Fundamentals of Magnetism). Perm': Permskiy natsional'nyy issledovatel'skiy politekhnicheskiy universitet, 2007, 253 p.
5. Knopfel' G. Sverhsil'nye impul'snye magnitnye polya (Super-Strong Pulsed Magnetic Fields). М.: МIR, 1972, 392 p.
6. Ulashchik V.S. Voprosy kurortologii, fizioterapii i lechebnoy fizicheskoy kul'tury – in Russ. (Questions of Balneology, Physiotherapy and Therapeutic Physical Culture), 2015, No. 4, pp. 48–53.
7. Sengupta S., Balla V.K. A Review on the Use of Magnetic Fields and Ultrasound for Non-Invasive Cancer Treatment. – Journal of Advanced Research, 2018, No. 14, pp. 97–111, DOI: 10.1016/j.jare.2018.06.003.
8. Crocetti S., et al. Low Intensity and Frequency Pulsed Electromagnetic Fields Selectively Impair Breast Cancer Cell Viability. – PLoS ONE, 2013, vol. 8, No. 9, e72944, DOI:10.1371/journal.pone.0072944.
9. Ruiz Gomez M.J., et al. 25 Hz Electromagnetic Field Exposure Has no Effect on Cell Cycle Distribution and Apoptosis in U 937 and HCA-2/1cch Cells. – Bioelectrochemistry, 2001, vol. 53(1), pp. 137–140, DOI: 10.1016/s0302-4598(00)00119-7.
10. Simko M., et al. Effects of 50 Hz EMF Exposure in Micronucleus Formation and Apoptosis in Transformed and Nontransformed Human Cell Lines. – Bioelectromagnetics, 1998, vol.19(2), pp. 85–91.
11. Pаt. RU2376043 С1. Sposob podavleniya funktsiy i razrusheniya kletok zlokachestvennyh opuholey (A Method of Suppressing the Functions and Destruction of Malignant Tumor Cells) / I.M. Donnik, A.P. Volobuev, E.D. Uskov, 2009.
12. Kurushin А.А. Reshenie mul'tifizicheskih SVCH zadach s pomoshch'yu SAPR COMSOL (Solving Multiphysical Microwave Tasks Using COMSOL CAD). М.: One-Book, 2016, 376 p.
13. Pavleyno М.А., et al. Modelirovanie raboty elektricheskih skhem v Simulink. Primenenie operatsionnyh usiliteley dlya fil'tratsii, usileniya i generatsii signalov (Simulation of Electrical Circuits in Simulink. Application of Operational Amplifiers for Filtering, Amplification and Signal Generation). SPb.: B.i., 2007, 210 p.
14. Polk C. CRC Handbook of Biological Effects of Electromagnetic Fields. EBook, 2019, 512 p., DOI:10.1201/9781351071017.
15. Kovalev К., Podolskaya N., Kolosov A. Modeling the Processes of Interaction of the Installation for Creating a Pulsed Electromagnetic Field with Biological Tissues. – Int. Conf. on Electrotechnical Complexes and Systems, Ufa, 2021, DOI: 10.1109/ICOECS52783.2021.9657280.
16. Podolskaya N., Kovalev К., Popov S. Studying the Applicability of a Pulsed Magnetic Field to Biological Tissues. – IOP Conference Series: Materials Science and Engineering, 2020, vol. 927, No. 1, DOI:10.1088/1757-899X/927/1/012065
Published
2022-09-29
Section
Article