An Autonomous Electric Power System with a Permanent Magnet Synchronous Generator

  • Yuriy T. PORTNOY
  • Aleksandr S. AVDEEV
  • Evgeniy V. VOLODIN
  • Aleksandr V. ROGOZA
  • Denis V. ROZHKOV
Keywords: autonomous electric power system, permanent magnet synchronous generator, storage battery, reversible converter, active voltage rectifier, autonomous voltage inverter, automatic control system

Abstract

The article deals with an autonomous electric power system (AEPS) with a permanent magnet synchronous generator (PMSG), storage battery (SB), and a static reversible converter (RC). The autonomous system has a transformer galvanic isolation between the AC and DC voltage networks. The converter operates in two modes: as a rectifier (the generator is in operation) and as an inverter (the generator is out of service). In the rectifier mode, the converter operates as an active voltage rectifier (AVR), which charges (recharges) the storage battery and stabilizes the generator voltage to form the main network. In the inverter mode, the converter operates as an autonomous voltage inverter to form a backup network. The autonomous electric power system structures were analyzed, and its two rational versions with the lowest current load of the converter have been selected based on the analysis results. One version of the structure, which contains, apart from the converter, an additional magnetizing device that stabilizes the generator voltage, operates with a DC network voltage of 250 ± 75 V. The other option does not contain an additional magnetizing device (MD) and operates with a DC network voltage of 600–640 V. For both versions, the automatic control system operating modes with stabilizing the generator voltage and charging the storage battery have been studied by simulating them on a computer.

Author Biographies

Yuriy T. PORTNOY

(JSC "Corporation "VNIIEM”, Moscow, Russia) –Chief Researcher, Cand. Sci. (Eng.).

Aleksandr S. AVDEEV

(JSC "Corporation "VNIIEM”, Moscow, Russia) – Engineer of the Second Category.

Evgeniy V. VOLODIN

(JSC "Corporation "VNIIEM”, Moscow, Russia) –Leading Specialist, Cand. Sci. (Eng.).

Aleksandr V. ROGOZA

(JSC "Corporation "VNIIEM”, Moscow, Russia) –Head of the RPC, Cand. Sci. (Eng.).

Denis V. ROZHKOV

(JSC "Corporation "VNIIEM”, Moscow, Russia) – Head of the Dept.

References

1. Харитонов С.А. и др. Стабилизация напряжения синхронного генератора с постоянными магнитами при переменной нагрузке. – Доклады ТУСУР, 2012, № 1(25), с. 139–146.
2. Шрейнер Р.Т. Математическое моделирование электроприводов переменного тока с полупроводниковыми преобразователями частоты. Екатеринбург: УРО РАН, 2000, 654 с.
3. Виноградов А.Б. Векторное управление электроприводами переменного тока. Иваново: ГОУВПО «Ивановский государственный энергетический университет имени В.И. Ленина», 2008, 298 с.
4. Калачев Ю.Н., Александров А.Г. Преобразователи автономных источников электроэнергии. М.: ДМК Пресс, 2021, 80 с.
5. Новожилов М.А., Пионкевич В.А. Разработка и исследование математических моделей трехфазных мостовых выпрямителей и инверторов. – Вестник Иркутского государственного технического университета, 2019, № 23(3), с. 553–574.
6. Upamanyu K., Ameta C., Narayanan G. Simplified Input Volta-ge Sensorless Vector Control for PWM Rectifiers. – IEEE Transactions on Industry Applications, 2020, DOI: 10.1109/TIA.2020.2992955.
7. Suhara E.M., Nandakumar M. Voltage Oriented Control of Three Phase PWM Rectifier with Bus Clamped Space Vector PWM. – IEEE International Conference on Power, Instrumentation, Control and Computing (PICC), 2015, DOI: 10.1109/PICC.2015.7455788.
8. Khan D. et al. A Resonant Damping Control and Analysis for LCL-Type Grid-Connected Inverter. – Energy Reports, 2022, vol. 8 (12), pp. 911–928, DOI: 10.1016/J.EGYR.2021.11.273.
9. Suraj G.O., Trivedi N. Comparative Analysis of PWM Based Front End Rectifier with Different Modulation Techniques. – IEEE 5th International Conference for Convergence in Technology (I2CT). 2019, DOI: 10.1109/I2CT45611.2019.9033862.
10. Hoang T.T.G. et al. Fractional Proportional Integral Controller Applied into Two Parallel 3-Phase PWM Rectifiers. – IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 2017, DOI: 10.1109/IAEAC.2017.8053966.
11. Радионов А.А., Маклаков А.С., Маклакова К.А. Энергосберегающее управление активным двунаправленным преобразователем частоты в составе мощных электроприводов переменного тока. – ЭППТ 2015, Екатеринбург, 2015, с. 45–49.
12. Микитченко А.Я. и др. Исследование режимов активного выпрямителя в транзисторном электроприводе постоянного и переменного тока. – Электротехника, 2010, № 7, с. 52–57.
13. Шевырёва Н.Ю. Повышение качества электроэнергии при электроснабжении буровых установок с частотно-регулируемым электроприводом: дис. … канд. техн. наук. М., 2016, 173 с.
14. Шевырёва Н.Ю. и др. Система автоматического регулирования напряжения синхронного генератора с постоянными магнитами на основе активного выпрямителя напряжения. – Вопросы электромеханики. Труды ВНИИЭМ, 2021, т. 181, № 2, с. 10–17.
15. Копылова Д.С. Математическая модель аккумуляторных батарей: магистерская диссертация. Тольятти, 2016, 89 с.
#
1. Haritonov S.А. et al. Doklady TUSUR – in Russ. (TUSUR Reports), 2012, No. 1(25), pp. 139–146.
2. Shreyner R.Т. Matematicheskoe modelirovanie elektroprivodov peremennogo toka s poluprovodnikovymi preobrazovatelyami chastoty (Mathematical Modeling of AC Electric Drives with Semiconductor Frequency Converters). Ekaterinburg: URO RAN, 2000, 654 p.
3. Vinogradov А.B. Vektornoe upravlenie elektroprivodami peremennogo toka (Vector Control of AC Electric Drives). Ivanovo: GOUVPO «Ivanovskiy gosudarstvennyy energeticheskiy universitet imeni V.I. Lenina», 2008, 298 p.
4. Kalachev Yu.N., Aleksandrov A.G. Preobrazovateli avtonom-nyh istochnikov elektroenergii (Converters of Autonomous Power Sources). М.: DMK Press, 2021, 80 p.
5. Novozhilov M.A., Pionkevich V.А. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta – in Russ. (Bulletin of Irkutsk State Technical University), 2019, No. 23(3), pp. 553–574.
6. Upamanyu K., Ameta C., Narayanan G. Simplified Input Voltage Sensorless Vector Control for PWM Rectifiers. – IEEE Transactions on Industry Applications, 2020, DOI: 10.1109/TIA.2020.2992955.
7. Suhara E.M., Nandakumar M. Voltage Oriented Control of Three Phase PWM Rectifier with Bus Clamped Space Vector PWM. – IEEE International Conference on Power, Instrumentation, Control and Computing (PICC), 2015, DOI: 10.1109/PICC.2015.7455788.
8. Khan D. et al. A Resonant Damping Control and Analysis for LCL-Type Grid-Connected Inverter. – Energy Reports, 2022, vol. 8 (12), pp. 911–928, DOI: 10.1016/J.EGYR.2021.11.273.
9. Suraj G.O., Trivedi N. Comparative Analysis of PWM Based Front End Rectifier with Different Modulation Techniques. – IEEE 5th International Conference for Convergence in Technology (I2CT). 2019, DOI: 10.1109/I2CT45611.2019.9033862.
10. Hoang T.T.G. et al. Fractional Proportional Integral Controller Applied into Two Parallel 3-Phase PWM Rectifiers. – IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 2017, DOI: 10.1109/IAEAC.2017.8053966.
11. Radionov A.A., Maklakov A.S., Maklakova К.А. EPPT 2015 – in Russ. (EPT 2015), Ekaterinburg, 2015, pp. 45–49.
12. Mikitchenko A.Ya. et al. Elektrotekhnika – in Russ. (Electrical Engineering), 2010, No. 7, pp. 52–57.
13. Shevyryova N.Yu. Povyshenie kachestva elektroenergii pri elektrosnabzhenii burovyh ustanovok s chastotno-reguliruemym elektroprivodom: dis. … kand. tekhn. nauk (Improving the Quality of Electricity in the Power Supply of Drilling Rigs with a Frequency-Controlled Electric Drive: Dis. ... Cand. Sci. (Eng.)). М., 2016, 173 p.
14. Shevyryova N.Yu. et al. Voprosy elektromekhaniki. Trudy VNIIEM – in Russ. (Questions of Electromechanics. Proceedings of VNIIEM), 2021, vol. 181, No. 2, pp. 10–17.
15. Kopylova D.S. Matematicheskaya model' akkumulyatornyh batarey: magisterskaya dissertatsiya (Mathematical Model of Batteries: Master's Thesis). Tol'yatti, 2016, 89 p.
Published
2023-02-20
Section
Article