A Device for Decreasing Loss in Electric Networks Containing Unbalanced Nonlinear Load

  • Igor′ V. NAUMOV
Keywords: asymmetry, non-sinusoidality, harmonics, unbalance, electric energy loss, versatile compensating device

Abstract

Matters concerned with controlling the operating modes of low-voltage electric networks are discussed. Thus, 0.4 kV electric networks are characterized by significant emission of additional current sequences generated by unbalanced nonlinear load. A versatile compensating device filtering additional power flows caused by unproductive fundamental and higher harmonic current components is proposed as a technical means minimizing the undesirable consequences of additional current load. A method and calculation software were developed, using which the operating mode of a 0.4 kV electric network section was studied with the possibility to incorporate a simulation model of the proposed device. The compensating device parameters are calculated proceeding from the unbalanced power consumption in the network section considered. By using the MATLAB software package, time diagrams visualizing the variation of the studied indicators have been obtained. The economic efficiency of the proposed versatile device for decreasing electric energy loss has been estimated.

Author Biography

Igor′ V. NAUMOV

(Irkutsk National Research Technical University, Irkutsk, Russia; Irkutsk State Agrarian University named after A. A. Yezhevsky, Irkutsk District, Russia) – Professor of the Power Supply and Electrical Engineering Dept., Dr. Sci. (Eng.), Professor.

References

1. GOST 32144-2013. Elektricheskaya energiya. Sovmestimost' tekhnicheskikh sredstv elektromagnitnaya. Normy kachestva elektricheskoy energii v sistemakh elektrosnabzheniya obshchego naznacheniya (Electric Energy. Electromagnetic Compatibility of Technical Equipment. Power Quality Limits in the Public Power Supply Systems). M.: Standartinform, 2014, 16 p.
2. Os'kin S.V. et al. Chrezvychaynye situatsii: promyshlennaya i ekologicheskaya bezopasnost' – in Russ. (Emergencies: Industrial and Environmental Safety), 2017, No. 4 (32), pp. 149–155.
3. Kozlovskaya V.B., Kalechits V.N. Trudy vysshih uchebnyh zavedeniy SNG i energeticheskih assotsiatsiy – in Russ. (Proceedings of Higher Educational Institutions of the CIS and Energy Associations), 2019, No. 62 (3), pp. 232–246.
4. Kostyukov D.А. Vestnik Severo-Kavkazskogo Federal'nogo Universiteta – in Russ. (Bulletin of the North Caucasus Federal University), 2018, No. 6 (69), pp. 24–34.
5. Konovalov Yu.V., Vorob'ev I.I. Vestnik Angarskoy gosudarstvennoy tekhnicheskoy akademii – in Russ. (Bulletin of the Angara State Technical Academy), 2014, No. 8, pp. 57–60.
6. Kilin S.V., Vendin S.V. Problemy elektrifikatsii sel'skogo hozyaystva: sb. nauchnyh trudov po materialam Vserossiyskogo NPK – in Russ. (Electrification Problems of Agriculture: Collection of Scientific Papers Based on the Materials of the All-Russian RPC), Yaroslavl', 2018, pp. 15–21.
7. Fan Z. et al. Investigation and Suppression of Asymmetric Modes Competition in Cerenkov Device by Conductivity Anisotropic Material Loading. – Journal of Physics D Applied Physics, 2021, 54(27), DOI:10.1088/1361-6463/abf61b.
8. Subrahmanyam K. A Study on the Issues of Power Quality in Power Systems. – International Journal of Engineering & Technology, 2018, No. 7, pp. 525–528, DOI:10.14419/ijet.v7i3.24.22806.
9. Sariev I.N. et al. Avtomatizatsiya i razrabotka programmnogo obespecheniya – in Russ. (Automation and Software Development), 2017, No. 2 (20), pp. 46–51.
10. Naumov I.V. Promyshlennaya energetika – in Russ. (Industrial Power Engineering), 2022, No. 5, pp. 2–14.
11. Pаt. SU982146А1. Simmetriruyushchee ustroystvo dlya tryohfaznoy chetyryohprovodnoy elektricheskoy seti (A Symmetrical Device for a Three-Phase Four-Wire Electrical Network) / А.К. Shidlovskiy et al., 1982.
12. Pаt. RU188396U1. Ustroystvo simmetrirovaniya napryazheniya v vysokovol'tnyh setyah (Voltage Balancing Device in High-Voltage Networks) / V.V. Burenin et al., 2019.
13. Pаt. RU61063U1. Simmetriruyushchee ustroystvo dlya tryohfaznoy chetyryohprovodnoy seti s reguliruemymi parametrami (A Symmetrical Device for a Three-Phase Four-Wire Network with Adjustable Parameters) / D.А. Ivanov et al., 2007.
14. Pаt. RU2490768C2. Simmetriruyushchee ustroystvo dlya tryohfaznyh setey s nulevym provodom (Symmetrical Device for Three-Phase Networks with Zero Wire) / I.V. Naumov et al., 2013.
15. Pаt. RU 2479088C1. Fil'trokompensiruyushchee ustroystvo (Filter Compensating Device) / Yu.M. Kulinich, 2013.
16. Pаt. RU 2414925C1. Fil'trokompensiruyushchee ustroystvo (Filter Compensating Device) / P.A. Butyrin et al., 2020.
17. Pаt. № 2479088. Fil'trokompensiruyushchee ustroystvo (Filter Compensating Device) / V.K. Duhovnikov et al., 2013.
18. Arrillaga Dzh. et al. Garmoniki v elektricheskih sistemah (Harmonics in Electrical Systems) / Ed. by Yu.S. Zhelezko). М.: Energoatomizdat, 1990, 319 p.
19. Naumov I.V. Metod i programma raschyota poter' moshchnosti i pokazateley nesimmetrii tokov i napryazheniy v raspredelitel'noy seti 0,38 kV s simmetriruyushchim ustroystvom (Method and Program for Calculating Power Losses and Indicators of Current and Voltage Asymmetry in a 0.38 kV Distribution Network with a Symmetrical Device). L.: SKhI, 1989, No. 3, 30 p.
20. Prikaz ministerstva energetiki RF ot 23.06.2015 g. № 380 (Order of the Ministry of Energy of the Russian Federation No. 380 dated 23.06.2015).
21. Naumov I.V. Snizhenie poter' i povyshenie kachestva elektricheskoy energii v sel'skih raspredelitel'nyh setyah 0,38 kV s pomoshch'yu simmetriruyushchih ustroystv: dis. … doktora tekhn. nauk (Reduction of Losses and Improvement of the Quality of Electric Energy in Rural Distribution Networks of 0.38 kV with the Help of Symmetrical Devices: Dis. ... Dr. Sci. (Eng.)). Irkutsk, 2002, 387 p.
22. Kovernikova L.I. et al. Promyshlennaya energetika – in Russ. (Industrial Power Engineering), 2021, No. 7, pp. 48–59.
23. Zhezhelenko I.V. Vysshie garmoniki v sistemah elektrosnab-zheniya prompredpriyatiy (Higher Harmonics in Power Supply Systems of Industrial Enterprises). М.: Energoatomizdat, 2000, 331 p.
24. Hati A.S., Chatterjee T.K. Symmetrical Component Filter Based on Line Condition Monitoring Instrumentation System for Mine Winder Motor. – Measurement, 2016, vol. 82, рp. 284–300, DOI:10.1016/j.measurement.2016.01.005.
25. Kovernikova L.I. Elektrichestvo – in Russ. (Electricity), 2010, No. 9, pp. 50–55.
26. Kovernikova L.I. et al. Elektrichestvo – in Russ. (Electricity), 2012, No. 1, pp. 43–49.
27. Odnostavochnyy tarif, differentsirovannyy po trem zonam sutok, na elektricheskuyu energiyu dlya naseleniya, prozhivayushchih v sel'skih naselennyh punktah, potrebiteley, i priravnennyh k nim na period s 01.01.2021 po 30.06.2021 (One-rate tariff, differentiated by three zones of the day, for electric energy for the population living in rural settlements, consumers, and equated to them for the period from 01.01.2021 to 30.06.2021) [Electron. resource], URL https://stroyfora.ru/tariff/area-8276c6a1-1a86-4f0d-8920-aba34d4cc34a/year-2021/type-16#% (Date of appeal 31.01.2023).
---
The author is sincerely grateful to the Head of the Department of the Altai State University, Doct. Techn. Sci., Professor A.A. Bagaev for providing data of measurements of electric energy parameters in the operating 0.4 kV electric networks of the Altai Territory.
Published
2023-04-27
Section
Article