A Three-Phase Transistor Matrix Frequency Converter with an Ultrasparse Topology: Properties and Possible Applications
Abstract
This article considers the development of an algorithm for control of a sectionalized matrix frequency converter, which makes it possible to obtain high power performance indicators. The mathematical basis and principles for developing the circuits of three-phase matrix frequency converters featuring better power performance indicators in comparison with the classic topology are presented. An option for implementing a matrix converter in a sectionalized form, which is new for the domestic electrical industry, is proposed. The spatial-vector control method of the converter implemented by means of software makes it possible to increase the converter efficiency to 98% or higher, ensure a sinusoidal waveform of the network source current with a low harmonic distortion factor, and the zero-phase shift of the network current with respect to the corresponding phase voltage. The fundamental approaches to reducing dynamic losses in the matrix converter are outlined. The technology of joint synchronized control of the converter rectifier and inverter sections with switching the rectifier section transistors without losses at zero current is shown. An interactive simulation model of a sectionalized matrix frequency converter based on an ultrasparse topology has been developed. The proposed converter control algorithm has been implemented in the model as an m-file. Converter simulation on a computer has yielded results that confirm high power performance indicators of the sectionalized frequency converter.
References
2. Ammar A. et al. A Review on Three-Phase AC/AC Power Converters Derived from the Conventional Indirect Matrix Converter. – IEEE International Conference on Industrial Technology (ICIT), 2020, pp. 432– 437, DOI: 10.1109/ICIT45562.2020.9067114.
3. Friedli T. et al. Comparative Evaluation of Three-Phase AC–AC Matrix Converter and Voltage DC-Link Back-to-Back Converter Systems. – IEEE Transactions on Industrial Electronics, 2012, vol. 59, No. 12, pp. 4487–4510, DOI: 10.1109/TIE.2011.2179278.
4. Siva V. et al. Ultra Sparse Matrix Converter with Impedance Network to Enhance the Voltage Gain. – IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT), 2022, DOI: 10.1109/SeFeT55524.2022.9909480.
5. Khaki B., Bahari M.I., Afjei S.E. DFIG Wind Turbines with Very Sparse and Sparse Matrix Converters to Control Frequency. – 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC), 2017, DOI: 10.1109/PEDSTC.2017.7910317.
6. Yuhendri M., Ahyanuardi A., Aswardi A. Direct Torque Control Strategy of PMSM Employing Ultra Sparse Matrix Converter. – International Journal of Power Electronics and Drive Systems (IJPEDS), 2018, 9(1), pp. 64–72, DOI: 10.11591/ijpeds.v9n1.pp64-72.
7. Li D. et al. Hybrid Modulation Strategy for Two-Stage Matrix Converter and its Application in Vector Control of Doubly Fed Induction Generato. – Journal of Advanced Computational Intelligence and Intelligent Informatics, 2016, vol. 20, No.1, pp. 171–180, DOI: 10.20965/jaciii.2016.p0171.
8. Shi T. et al. Harmonic Spectrum of Output Voltage for Space Vector Pulse Width Modulated Ultra Sparse Matrix Converter. – Energies, 2018,11(2): 390; DOI:10.3390/en11020390.
9. Gong Z. et al. Design and Evaluation of a Virtual Vector Based Modulated Model Predictive Control for the Indirect Matrix Converters with Improved Performance. – IEEE Transactions on Industrial Electronics, 2022, vol. 69, No. 12, pp. 12019–12029, DOI: 10.1109/ TIE.2021.3130320.
10. Kislyakov M.A. et al. Improving the Characteristics of a Matrix Frequency Converter by Using Sliding Modes for the Control of Transistor Switching. – AIP Conference Proceedings, 2021, 2402, 030014, DOI:10.1063/5.0071855.
11. Курилин С.П., Соколов А.М., Прокимнов Н.Н. Компьютерная программа для моделирования показателей технического состояния электромеханических систем. – Прикладная информатика, 2022, т. 17, № 2, с.105–119.
12. Крутиков К.К., Кисляков М.А., Рожков В.В. Управление матричным непосредственным преобразователем частоты вторичных источников электропитания автономных объектов. – Электричество, 2021, № 7, с. 41–50.
13. Дарьенков А.Б. и др. Сравнительное имитационное моделирование работы матричного преобразователя частоты со скалярным и пространственно-векторным алгоритмами управления. – Труды НГТУ им. Р.Е. Алексеева, 2018, № 4 (123), с. 89– 99.
14. Климов В.Н., Климова С.В. Двунаправленные ключи в матричных структурах преобразователей переменного тока. – Силовая электроника, 2008, № 4, с. 58– 61.
15. Морозов А.В., Барсуков В.К., Морозов В.А. Алгоритмы управления и схемотехника матричного преобразователя частоты. – Интеллектуальные системы в производстве, 2014, № 1 (23), с. 140–144.
16. Поляков А.С. Применение непрямых матричных преобразователей с частотно-токовым управлением для систем вентиляции автономных объектов. – VII Международная научно-техническая конференция «Электромеханические преобразователи энергии», Томск, 2015, с. 254–258.
---
Исследование выполнено за счет гранта Российского научного фонда № 22-61-00096, https://rscf.ru/project/22-61-00096.
#
1. Purnama H.S., Sutikno T., Facta M. Modulation Strategies for Indirect Matrix Converter: Complexity, Quality and Performance. – 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2018, pp. 97–100, DOI: 10.1109/EECSI.2018.8752702
2. Ammar A. et al. A Review on Three-Phase AC/AC Power Converters Derived from the Conventional Indirect Matrix Converter. – IEEE International Conference on Industrial Technology (ICIT), 2020, pp. 432– 437, DOI: 10.1109/ICIT45562.2020.9067114.
3. Friedli T. et al. Comparative Evaluation of Three-Phase AC–AC Matrix Converter and Voltage DC-Link Back-to-Back Converter Systems. – IEEE Transactions on Industrial Electronics, 2012, vol. 59, No. 12, pp. 4487–4510, DOI: 10.1109/TIE.2011.2179278.
4. Siva V. et al. Ultra Sparse Matrix Converter with Impedance Network to Enhance the Voltage Gain. – IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT), 2022, DOI: 10.1109/SeFeT55524.2022.9909480.
5. Khaki B., Bahari M.I., Afjei S.E. DFIG Wind Turbines with Very Sparse and Sparse Matrix Converters to Control Frequency. – 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC), 2017, DOI: 10.1109/PEDSTC.2017.7910317.
6. Yuhendri M., Ahyanuardi A., Aswardi A. Direct Torque Control Strategy of PMSM Employing Ultra Sparse Matrix Converter. – International Journal of Power Electronics and Drive Systems (IJPEDS), 2018, 9(1), pp. 64–72, DOI: 10.11591/ijpeds.v9n1.pp64-72.
7. Li D. et al. Hybrid Modulation Strategy for Two-Stage Matrix Converter and its Application in Vector Control of Doubly Fed Induction Generato. – Journal of Advanced Computational Intelligence and Intelligent Informatics, 2016, vol. 20, No.1, pp. 171–180, DOI: 10.20965/jaciii.2016.p0171.
8. Shi T. et al. Harmonic Spectrum of Output Voltage for Space Vector Pulse Width Modulated Ultra Sparse Matrix Converter. – Energies, 2018,11(2): 390; DOI:10.3390/en11020390.
9. Gong Z. et al. Design and Evaluation of a Virtual Vector Based Modulated Model Predictive Control for the Indirect Matrix Converters with Improved Performance. – IEEE Transactions on Industrial Electronics, 2022, vol. 69, No. 12, pp. 12019–12029, DOI: 10.1109/ TIE.2021.3130320.
10. Kislyakov M.A. et al. Improving the Characteristics of a Matrix Frequency Converter by Using Sliding Modes for the Control of Transistor Switching. – AIP Conference Proceedings, 2021, 2402, 030014, DOI:10.1063/5.0071855.
11. Kurilin S.P., Sokolov A.M., Prokimnov N.N. Prikladnaya informatika – in Russ. (Applied Computer Science), 2022, vol. 17, No. 2, pp.105–119.
12. Krutikov K.K., Kislyakov M.A., Rozhkov V.V. Elektrichestvo – in Russ. (Electricity), 2021, No. 7, pp. 41–50.
13. Dar'enkov А.B. et al. Trudy NGTU im. R.E. Alekseeva – in Russ. (Proceedings of the NSTU n.a. R.E. Alekseev), 2018, No. 4 (123), pp. 89– 99.
14. Klimov V.N., Klimova S.V. Silovaya elektronika – in Russ. (Power Electronics), 2008, No. 4, pp. 58– 61.
15. Morozov A.V., Barsukov V.K., Morozov V.А. Intellektual'nye sistemy v proizvodstve – in Russ. (Intelligent Systems in Production), 2014, No. 1 (23), pp. 140–144.
16. Polyakov А.S. VII Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya «Elektromekhanicheskie preobrazovateli energii» – in Russ. (VII Int. Scientific and Technical Conference "Electromechanical Energy Converters"), Тоmsk, 2015, pp. 254–258.
---
The research was financially supported by the Russian Science Foundation, grant no. 22-61-00096, https://rscf.ru/project/22-61-00096.