Numerical Simulation of Electromagnetic Fields: Multiphysical Problems, Tools, and Education

  • Pavel A. BUTYRIN
  • Semen D. DUBITSKY
  • Hikolay V. KOROVKIN
Keywords: finite element method, electromagnetic field modeling, multiphysical modeling, multiscale models, teaching problems

Abstract

Matter sconcerned with numerical simulation of multiphysical systems involving electromagnetic fields and problems associated with teaching such simulation to students specializing in electrical engineering are considered. Owing to the universal nature of numerical field simulation methods, such for example as the finiteelement method, fields of different physical nature can be included in the model:electromagnetic field, temperature field, field of mechanical stresses and strains, and others. It is also possible to combine models of different nature in a common analysis scheme: field and chain, deterministic and stochastic. The approach is discussed with reference to the problem of electromagnetically accelerating a conducting body, in which the multiphysical approach gives knowledge that is not accessible in analyzing a single physical domain. The course “Electromagnetic Field Theory, which is among the most important ones in educating students specializing in electrical engineering, is very difficult to learn. It canbe made more practice-oriented, clear, live, and captivating by using modern computer programs for numerical analysis of electromagnetic field. The article discusses the technical and methodical problems concerned with integrating the numerical simulation techniques into the canvas of the existing course: refining the education objectives and techniques for fulfilling them, selecting the correct place of simulation in the course of electromagnetic field theory, and selecting the optimal software.

Author Biographies

Pavel A. BUTYRIN

BUTYRIN Pavel A. (National Research University «Moscow Power Engineering Institute», Moscow, Russia) — Head of the Department, Corresponding member of the Russian Academy of Sciences

Semen D. DUBITSKY

DUBITSKY Semen D. (LLC «Tor», St. Petersburg, Russia) — Researcher, Creator of program «ELCUT»

Hikolay V. KOROVKIN

KOROVKIN Hikolay V. (Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia) — Professor, Dr. Sci. (Eng.)

References

Ray W. Claugh Early history of the finite element method from the view point of a pioneer. — Int. J. Numer. Meth. Eng-ng, 2004, 60, рр. 283-287.

Stein E., Olgierd C. Zienkiewicz, a pioneer in the development of the finite element method in engineering science. — Steel Construction, 2009, No. 2 (4), pp. 264—272.

Silvester P.A. General High-Order Finite-Element Analysis Program Waveguide. — IEEE Trans. on Microwave Theory and Techniques, 1969, vol. 17, No. 4.

Chari M. V. K. and Silvester P. P. Finite element analysis of magnetically saturated dc machines. — IEEE Trans. Power App. Syst.,1970, vol. PAS-89, No. 7, pp. 1642-1651.

Hameyer K, Driesen J., De Gersem H., and Belmans R. The classification of coupled field problems. — IEEE Trans. Magn., 1999, vol. 35, No. 3, pp. 1618—1621.

Dolbow J., Khaleel M.A., Mitchell J. Multiscale Mathematics Initiative: A Roadmap. U.S. Department of Energy report, 2004.

Horstemeyer M.F. Multiscale Modelling: A Review. In book: Practical Aspects of Computational Chemistry: Methods, Concepts and Applications/Edit. by Jerzy Leszczynski, Manoj Shukla. — Springer, 2009, pp. 87—137.

Подольцев А.В., Кучерявая И.Н. Мультифизическое мо­делирование в электротехнике. Киев: Институт электродинами­ки НАН Украины, 2015, 304 с.

ANSYS Maxwell: Low Frequency Electromagnetic Field Simulation [Электрон. ресурс] https://www.ansys.com/products/ electronics/ansys-maxwell (Дата обращения 02.01.2019).

Software for Simulating Static and Low-Frequency Electromagnetics [Электрон. ресурс] https://www.comsol.com/ acdc-module (Дата обращения 02.01.2019).

CSTEM STUDIO Overview [Электрон. ресурс] https://www.cst.com/products/cstems (Дата обращения 06.01.2019).

Opera Electromagnetic FEA Simulation Software [Элек­трон. ресурс] https://operafea.com (Дата обращения 02.01.2019).

Flux FEA for electromagnetic, electric and thermal analysis [Офиц. сайт] https://altairhyperworks.com/product/flux (Дата об­ращения: 02.01.2019).

Infolytica is now part of Mentor, a Siemens Business — Mentor Graphics [Электрон. ресурс] https://www.mentor.com/ products/mechanical/infolytica (Дата обращения 02.01.2019).

JMAG: Simulation Technology for Electromechanical Design [Электрон. ресурс] https://www.jmag-international.com/ (Дата обращения 07.01.2019).

Cendes, Z. An interview with DrZoltanCendes. — Microwaves & RF, September 1, 2001, pp. 47—49.

Суханова А. Объединение двух миров — ПО для маши­ностроительного и электронного проектирования — сделает цифровой двойник изделия всеобъемлющим (Интервью Tony Hemmelgarn, президента CEO Siemens PLM Software). — CAD/CAMCAE Observer, 2017, № 8, c. 6—14.

Павлов С. CAE-технологии в 2016 г.: обзор достижений и анализ рынка. — CAD/CAMCAE Observer, 2017, № 6, c. 6—21.

Rosu, M., Saitz, J., Arkkio A. Hysteresis model for finite-element analysis of permanent-magnet demagnetization in a large synchronous motor under a fault condition. — IEEE Trans. on magnetics, 2005, 41(6), pp. 2118—2123.

Zhilichev Y. Analysis of Permanent Magnet Demagnetization Accounting for Minor B-H Curves. — IEEE Trans. on magnetics, 2008, 44(11), 4285—4288.

Meeker D. Continuum representation of wound coils via an equivalent foil approach—2010 [Электрон. ресурс] http://www. femm.info/examples/prox/notes.pdf (Дата обращения 08.01.2019).

Бондалетов В.Н., Иванов Е.Н. Бесконтактное индукци­онное ускорение проводников до гиперзвуковых скоростей. — Прикладная механика и техническая физика, 1975, № 5, с. 110—115.

Дубицкий С.Д. ELCUT 5.1 — платформа разработки при­ложений анализа полей. — Exponenta Pro. — Математика в при­ложениях, 2004, №1(5) с. 20—26.

Дубицкий С.Д. Инженерное моделирование квазистатического электромагнитного поля в программе ELCUT для задач электроники. — Силовая электроника, 2017, № 6 с. 64—68.

Бутырин П.А., Дубицкий С.Д., Коровкин Н.В. Использо­вание компьютерного моделирования в преподавании теории электромагнитного поля. — Электричество, 2014, № 10, с. 66.
#
Ray W. Claugh Early history of the finite element method from the view point of a pioneer. Int. J. Numer. Meth. Eng-ng 2004, 60, pp. 283-287.

Stein E., Olgierd C. Zienkiewicz, a pioneer in the development of the finite element method in engineering science. — Steel Construction, 2009, No. 2 (4), pp. 264—272.

Silvester P.A General High-Order Finite-Element Analysis Program Waveguide. — IEEE Trans. on Microwave Theory and Techniques, 1969, vol. 17 No. 4.

Chari M.V.K. and Silvester P.P. Finite element analysis of magnetically saturated dc machines. — IEEE Trans. Power App. Syst., 1970, vol. PAS-89, No. 7, pp. 1642—1651.

Hameyer K, Driesen J., De Gersem H. and Belmans R. The classification of coupled field problems. — IEEE Trans. Magn., 1999, vol. 35, No. 3, pp. 1618—1621.

Dolbow J., Khaleel M.A., Mitchell J. Multiscale Mathematics Initiative: A Roadmap. U.S. Department of Energy report, 2004.

Horstemeyer M.F. Multiscale Modelling: A Review. In book: Practical Aspects of Computational Chemistry: Methods, Concepts and Applications/Edit. by Jerzy Leszczynski, Manoj Shukla. — Springer, 2009, pp. 87—137.

Podol’tsev A.V., Kucheryavaya I.N. Mul’tifizicheskoe modelirovaniye v elektrotekhnike. Kiyev: Institut elektrodinamiki NAN Ukrainy (Multiphysical modeling in electrical engineering. Kiev, Institute of Electrodynamics, Ukrainian Academy of Sciences), 2015, 304 pp.

ANSYS Maxwell: Low Frequency Electromagnetic Field Simulation [Electron. resurs] https://www.ansys.com/products/ electronics/ansys-maxwell (Data obrashcheniya 02.01.2019).

Software for Simulating Static and Low-Frequency Electromagnetics [Electron. resurs] https://www.comsol.com/ acdc-module (Data obrashcheniya: 02.01.2019).

CST EM STUDIO Overview [Electron. resurs] https://www.cst.com/products/cstems (Data obrashcheniya 06.01.2019).

Opera Electromagnetic FEA Simulation Software [Electron. resurs] https://operafea.com (Data obrashcheniya 02.01.2019).

Flux FEA for electromagnetic, electric and thermal analysis [Ofits. Sayt] https://altairhyperworks.com/product/flux (Data obrashcheniya 02.01.2019)

Infolytica is now part of Mentor, a Siemens Business — Mentor Graphics [Electron. resurs] https://www.mentor.com/ products/mechanical/infolytica (Data obrashcheniya 02.01.2019).

JMAG: Simulation Technology for Electromechanical Design [Electron. resurs] https://www.jmag-international.com/ (Data obrashcheniya 07.01.2019).

Cendes, Z. An interview with Dr Zoltan Cendes. — Microwaves & RF, September 1, 2001, pp. 47—49.

Sukhanova A. Ob”yedineniye dvukh mirov — PO dlya mashinostroitel’nogo i elektronnogo proektirovaniya — sdelaet tsifrovoy dvoynik izdeliya vseob’’yemlyushchim — CAD/CAMCAE Observer, 2017, No. 8, pp. 6—14.

Pavlov C. SAE — tekhnologii v 2016 g.: obzor dostizheniy i analizrynka. — CAD/CAMCAE Observer, 2017, No. 6, pp. 6—21.

Rosu, M., Saitz, J., Arkkio A. Hysteresis model for finite-element analysis of permanent-magnet demagnetization in a large synchronous motor under a fault condition. — IEEE Trans. on magnetics, 2005, 41(6), pp. 2118—2123.

Zhilichev Y. Analysis of Permanent Magnet Demagnetization Accounting for Minor B-H Curves. — IEEE Trans. on magnetics, 2008, 44(11), 4285—4288.

Meeker D. Continuum representation of wound coils via an equivalent foil approach—2010 [Electron. resurs] http://www. femm.info/examples/prox/notes.pdf (Data obrashcheniya 08.01.2019).

Bondaletov V.N., Ivanov Ye.N. Prikladnaya mekhanika i tekhnicheskaya fizika — in Russ. (Applied Mechanics and Technical Physics), 1975, No. 5, pp. 110—115.

Dubitskiy S.D. Matematika v prilozheniyakh — in Russ. (Mathematics in applications), 2004, No. 1(5) pp. 20—26.

Dubitskiy S.D. Silovaya elektronika — in Russ. (Power Electrical Engineering), 2017, No. 6 pp. 64—68.

Butyrin P.A., Dubitskiy S.D., Korovkin N.V. Elektrichestvo — in Russ. (Electricity), 2014, No. 10, pp. 66.
Published
2019-06-19
Section
Article