Megawatt-Range Electrical Generators for Wind Power: State of the Art and Development Trends

  • Viktor N. ANTIPOV
  • Andrei D. GROZOV
  • Anna V. IVАNOVA
Keywords: synchronous generator, doublyfed asynchronous generator, permanent magnets, superconductivity, gearless drive, wind turbine

Abstract

The modern designs and development trends of electrical generators for wind turbines used in continental and offshore windmill farms are analyzed. Three types of generators for high-speed, low-speed, and gearless drives applied in the megawatt range of capacities are considered. The necessary electromagnetic loads of the generators and the change of their main sizes as a function of power capacity are determined. The trend toward using gearless permanent magnet synchronous generators for capacities up to 8 MW is pointed out. Synchronous generators with both radial magnetization and other versions (with an axial flux, without ferromagnetic cores, etc.) are considered. For capacities of 10 MW and higher, the wind turbine mass can be decreased essentially by using a superconducting generator. However, due to the cost of superconductor, the commercially profitable version has not unequivocally been determined. Different projects (with “warm” and “cold” superconductivity), as well as versions involving the use of both fully superconducting generators and generators containing only a superconducting excitation system are considered.

Author Biographies

Viktor N. ANTIPOV

ANTIPOV Viktor N. (Russian Academy of Sciences (RAS), Institute of Silicate Chemistry (ISCh), St. Petersburg, Russia) – Leading scientist, Dr. Sci. (Eng.)

Andrei D. GROZOV

GROZOV Andrei D. (RAS ISCh, St. Petersburg, Russia) – Scientist

Anna V. IVАNOVA

IVАNOVA Anna V. (RAS ISCh, St. Petersburg, Russia) – Senior Scientist, Cand. Sci. (Eng.)

References

Оффшорная ветроэнергетика Европы: итоги 2018 года. [Электрон. ресурс], https://elektrovesti.net/64470 (дата обращения 16.03.2019).

Yang X., Patterson D., Hudgins J. Permanent Magnet Generator Design and Control for Large Wind Turbines. – Proc. of Int. Conf. on Power Electronics and Machines in Wind Applications (PEMWA 2012), Denver (US), Jul. 2012. pp.1-5. Paper 257. DOI: 10.1109/PEMWA.2012.6316367.

Gamesa 5.0 MW. [Электрон. pесурс] https://en.wind-turbine-models.com/turbines/768-gamesa-g132-.0mw (дата обращения 23.03.2019).

SL6000 Series Wind Turbine [Электрон. ресурс] http://sinovel.com/english/content/?109.html (дата обращения 18.02.2019).

E126 State of the art. [Электрон. ресурс] http://www.enercon.de/en-en/66.htm.(дата обращения 02.02.2019).

Vestas V164-8.0 [Электрон. ресурс] https://en.wind-turbine-models.com/turbines/318-vestas-v164-8.0 (дата обращения 18.03.2019).

Polinder H., van ser Pijl F.F.A., de Vilder G.J., Tavner P.J. Comparison of direct-drive and geared generator concepts for wind turbines. – IEEE Transactions on Energy Conversion, 2006, No. 21(3), рр. 725–733.

Юсупов К.Н., Беляев К.Л. Ветроэнергетическая установка SWT 3.0-101: безредукторная технология от Siemens. – Турбины и дизели, 2011, № 4, с. 4–9.

Siemens 6.0 MW Offshore Wind Turbine, 2014 [Электрон. ресурс] https://www.energy.siemens.com/us/pool/hq/power-generation/renewables/wind-power/wind%20turbines/6MW_direct_ drive_offshore_wind_turbine.pdf. (дата обращения 28.02.2019).

Semken R.S., Polikarpova M., Roytta P., Alexandrova J., Pyrhonen J., Nerg J., Mikkola A. and Backman J. Direct-Drive Permanent Magnet Generators for HighPower Wind Turbines: Benefits and Limiting Factors. – IET Renewable Power Generation, 2012, No. 6(1), рр. 1–8.

Антипов В.Н., Кручинина И.Ю. Проблемные вопросы создания высокоскоростных микротурбогенераторов и пути их решения. – Информационно-управляющие системы, 2012, № 4, с. 25–34.

Bang D., Polinder H., Shrestha G., Ferreira J.A. Promising direct-drive generator system for large wind turbines. – EPE Journal, 2008, No. 18(3), рр. 7–13.

Zhang J., Chen Z. and Cheng M. Design and comparison of a novel stator interior permanent magnet generator for direct-drive wind turbines. – IET Renewable Power Generation, 2007, No. 1(4), рр. 203–210.

Alexandrova Y., Semken R.S., Pyrhonen J. Permanent Magnet Synchronous Generator Design Solution for Large Direct-Drive Wind Turbines. – Int. Review of Electrical Engineering (IREE), 2013, No. 8(6), рр. 1728–1737.

Sethuraman L., Maness M., Dykes K. Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using Generator SE // AIAA SciTech Forum: 35th Wind Energy Symposium, Grapevine, Texas. DOI: 10.2172/1395455.

Permanent magnet generators. The Switch [Электрон. ресурс] URL: http://www.theswitch.com/wind-power/permanent-magnet-generators (дата обращения 14.03.2019).

Marles B., Yand M., Musial W. Comparative assessment of direct drive high temperatura supercondacting generators in multimegawatt class wind turbinesю – National Renewable Energy Laboratory. Technical Report, 2010 [Электрон. ресурс] http://www.osti.gov/bridge (дата обращения 30.02. 2019).

Ragheb M. Modern Wind Generators. NetFiles. University of Illinois at Urbana-Champaign, 2010, 90 p.

AMSC. Sea Titan TM 10 MW Wind Turbine [Электрон. ресурс] http://www.amsc.com/documents/seatitan-10-mw-wind-turbine-data-shee (дата обращения 29.01.2019).

Snitchier G., Gamdle B., King C. 10 MW class superconductor wind turbine generators. – IEEE Trans. Appl. Supercond, 2011, vol. 21, No. 3, pp. 1089–1092.

Liang Y., Rotaru M.D., Sykulski J.R. Electromagnetic simulation of a fully superconducting 10-MW-classs wind turbine generator. – IEEE Trans. Appl. Superconductivity, 2013, vol. 23 (6), pp. 46–50. DOI: 10.1109/TASC.2013.2277778.

Fair R., Stautner W., Douglass M. et al. Superconductivity for Large-Scale Wind Turbines. – DOE report Appl. Superconductivity Conf., Portland, Oregon October 11th, 2012.

Advance Magnetic Lab [Электрон. ресурс] http://www.magnetlab.com (дата обращения 14.03.2019).
#
Affshornaya vetroenergetika evropy: itogi 2018 data [Electron. resurs] https://elektrovesti.net/64470 (Data obrashcheniya 16.03.2019).

Yang X., Patterson D., Hudgins J. Permanent Magnet Generator Design and Control for Large Wind Turbines. – Proc. of Int. Conf. on Power Electronics and Machines in Wind Applications (PEMWA 2012), Denver (US), Jul. 2012. pp.1-5. Paper 257. DOI: 10.1109/PEMWA.2012.6316367.

Gamesa 5.0 MW [Electron. resurs] https://en.wind-turbine-models.com/turbines/768-gamesa-g132-5.0mw (Data obrashcheniya 23.03.2019).

SL6000 Series Wind Turbine [Electron. resurs] http://sinovel.com/english/content/?109.html (Data obrascheniya 18.02.2019).

E126 State of the art. [Electron. resurs] http://www.enercon.de/en-en/66.htm. (Data obrashcheniya 02.02.2019).

Vestas V164-8.0 [Electron. resurs] https://en.wind-turbine-models.com/turbines/318-vestas-v164-8.0 (Data obrashcheniya18.03.2019).

Polinder H., van ser Pijl F.F.A., de Vilder G.J., Tavner P.J. Comparison of direct-drive and geared generator concepts for wind turbines. – IEEE Transactions on Energy Conversion, 2006, No. 21(3), рр. 725–733.

Yusupov K.N., Belyayev K.L. Turbiny i dizeli – in Russ. (Turbines and Diesel Engines), 2011, No. 4, pp. 4–9.

Siemens 6.0 MW Offshore Wind Turbine. 2014 [Electron. resurs] https://www.energy.siemens.com/us/pool/hq/power-generation/renewables/wind-power/wind%20turbines/6MW_direct_ drive_offshore_wind_turbine.pdf. (Data obrashcheniya 28.02.2019).

Semken R.S., Polikarpova M., Roytta P., Alexandrova J., Pyrhonen J., Nerg J., Mikkola A. and Backman J. Direct-Drive Permanent Magnet Generators for HighPower Wind Turbines: Benefits and Limiting Factors. – IET Renewable Power Generation, 2012, No. 6(1), рр. 1–8.

Antipov V.N., Kruchinina I.Yu. Informatsionnye- uoravlyayushchiye sistemy – in Russi. (Management Information Systems), 2012, No. 4, pp. 25–34.

Bang D., Polinder H., Shrestha G., Ferreira J.A. Promising direct-drive generator system for large wind turbines. – EPE Journal, 2008, No. 18(3), рр. 7–13.

Zhang J., Chen Z. and Cheng M. Design and comparison of a novel stator interior permanent magnet generator for direct-drive wind turbines. – IET Renewable Power Generation, 2007, No. 1(4), рр. 203–210.

Alexandrova Y., Semken R.S., Pyrhonen J. Permanent Magnet Synchronous Generator Design Solution for Large Direct-Drive Wind Turbines. – Int. Review of Electrical Engineering (IREE), 2013, No. 8(6), рр. 1728–1737.

Sethuraman L., Maness M., Dykes K. Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using Generator SE // AIAA SciTech Forum: 35th Wind Energy Symposium, Grapevine, Texas. DOI: 10.2172/1395455.

Permanent magnet generators. The Switch [Electron. resurs] URL: http://www.theswitch.com/wind-power/permanent-magnet-generators (Data obrashcheniya 14.03.2019).

Marles B., Yand M., Musial W. Comparative assessment of direct drive high temperatura supercondacting generators in multimegawatt class wind turbinesю – National Renewable Energy Laboratory. Technical Report, 2010 [Electron resurs] http://www.osti.gov/bridge (Data obrashcheniya 30.02. 2019).

Ragheb M. Modern Wind Generators. NetFiles. University of Illinois at Urbana-Champaign, 2010, 90 p.

AMSC. Sea Titan TM 10 MW Wind Turbine [Electron. resurs] http://www.amsc.com/documents/seatitan-10-mw-wind-turbine-data-shee (Data obrashcheniya 29.01.2019).

Snitchier G., Gamdle B., King C. 10 MW class superconductor wind turbine generators. – IEEE Trans. Appl. Supercond, 2011, vol. 21, No. 3, pp. 1089–1092.

Liang Y., Rotaru M.D., Sykulski J.R. Electromagnetic simulation of a fully superconducting 10-MW-classs wind turbine generator. – IEEE Trans. Appl. Superconductivity, 2013, vol. 23 (6), pp. 46–50. DOI: 10.1109/TASC.2013.2277778.

Fair R., Stautner W., Douglass M. et al. Superconductivity for Large-Scale Wind Turbines. – DOE report Appl. Superconductivity Conf., Portland, Oregon October 11th, 2012.

Advance Magnetic Lab [Electron. resurs] http://www.magnetlab.com (Data obrashcheniya 14.03.2019).
Published
2019-08-15
Section
Article