Development of a Fuzzy Controller for Damping Oscillations of a Flexible Suspended Load in the Electromechanical Systems of Crane Mechanisms
Abstract
The article addresses studies aimed at damping the vibrations that occur in the crane travel mechanisms when moving a load on a flexible suspension. An algorithm has been developed for developing a universal control unit based on fuzzy logic that adjusts the electric drive speed setting signal. A step-by-step development of a universal fuzzy controller in the MATLAB Simulink environment is presented, the use of which will reduce the load on processor hardware resources. The results of studing the use of the proposed universal fuzzy controller as a unit for damping vibration of a flexibly suspended load are presented. The use of the controller made it possible to reduce the amplitude of load fluctuations during transients and reduce it to zero in steady state by introducing a corrective addition to the signal coming from the intensity setpoint adjuster. An increase in the deviation of the load entails an increase in the correction signal output from the fuzzy controller, causing the movement mechanism to slow down, thereby resulting in a smaller angle by which the load deviates from the vertical position.
References
2. Velic T. et al. Efficiency Optimization of Electric Drives with Full Variable Switching Frequency and Optimal Modulation Methods. – 17th Conference on Electrical Machines, Drives and Power Systems (ELMA), 2021, DOI: 10.1109/ELMA52514.2021.9503056.
3. Синюкова Т.В., Мещеряков В.Н., Синюков А.В. Исследование систем управления для подъемно-транспортных механизмов. – Известия высших учебных заведений. Проблемы энергетики, 2021, т. 23б, № 1, с. 167–181.
4. Matic P.R., Blanusa B.D., Vukosavic S.N. A Novel Direct Torque and Flux Control Algorithm for the Induction Motor Drive. – IEEE International Electric Machines and Drives Conference, 2003, vol. 2, рp. 965–970, DOI: 10.1109/IEMDC.2003.1210351.
5. Azer P., Bilgin B., Emadi A. Comprehensive Analysis and Optimized Control of Torque Ripple and Power Factor in a Three-Phase Mutually Coupled Switched Reluctance Motor with Sinusoidal Current Excitation. – IEEE Transactions on Power Electronics, 2021, vol. 36, No. 2, pp. 7150–7164, DOI: 10.1109/TPEL.2020.3038741.
6. Аксаментов Д.Н. Исследование адаптивного закона управления мостовым краном на его макете. – Вестник Ивановского государственного энергетического университета, 2022, № 2, с. 47–57.
7. Корытов М.С., Щербаков В.С. Аналитические решения задачи гашения остаточных колебаний груза мостового крана. – Системы. Методы. Технологии, 2016, № 3 (31), с. 63–67.
8. Синюков А.В. и др. Использование аппарата на базе нечеткой логики для демпфирования колебаний гибкоподвешенного груза. – Известия высших учебных заведений. Проблемы энергетики, 2024, т. 26, № 3, с. 33–49.
9. Корытов М.С., Щербаков В.С., Шершнева Е.О. Обоснование значений коэффициентов регуляторов гашения колебаний груза мостового крана. – Вестник СибАДИ, 2017, № 1 (53), с. 12–19.
10. Sorensen K. et al. A Multi-Operational-Mode Anti-Sway and Positioning Control for an Industrial Bridge Crane. – 17th World Congress the International Federation of Automatic Control, 2008, р. 881–888, DOI: 10.3182/20080706-5-KR-1001.3834.
11. Сагдатуллин А.М. Оптимизация архитектуры нечетких автоматизированных систем на основе алгоритма наблюдателя состояния. – Математические методы в технологиях и технике, 2022, № 10, с. 81–84.
12. Белов М.П., Лань Н.В. Разработка нейросетевого наблюдателя для оценки координат системы управления электроприводом оптико-механического комплекса. – Известия СПбГЭТУ «ЛЭТИ», 2021, № 3, с. 65–72.
13. Буянкин В.М. Элементы искусственного интеллекта в системах управления электроприводом с нечеткой логикой. – Тенденции развития науки и образования, 2020, № 60-2, с. 8–13.
14. Белов А.М., Белов М.П. Применение нейронных сетей в электроприводных системах насосных агрегатов. – Международная конференция по мягким вычислениям и измерениям, 2022, т. 1, с. 91–94.
15. Yuxiang N.I.U., Hui L.I., Feiyang L.I.U. A Loss-aware Continuous Hopfield Neural Network (CHNN)-based Mapping Algorithm in Optical Network-on-Chip (ONoC). – 20th International Conference on Optical Communications and Networks (ICOCN), 2022, DOI: 10.1109/ICOCN55511.2022.9901288.
#
1. Khashimov A., Tairov Y., Rampias I. Efficiency of an Energy-Saving System of Asynchronous Electric Drive for Metallurgical Enterprises. – International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2020, DOI: 10.1109/SPEEDAM48782.2020.9161975.
2. Velic T. et al. Efficiency Optimization of Electric Drives with Full Variable Switching Frequency and Optimal Modulation Methods. – 17th Conference on Electrical Machines, Drives and Power Systems (ELMA), 2021, DOI: 10.1109/ELMA52514.2021.9503056.
3. Sinyukova T.V., Meshcheryakov V.N., Sinyukov A.V. Izvestiya vysshih uchebnyh zavedeniy. Problemy energetiki – in Russ. (News of Higher Educational Institutions. Energy Problems), 2021, vol. 23b, No. 1, pp. 167–181.
4. Matic P.R., Blanusa B.D., Vukosavic S.N. A Novel Direct Torque and Flux Control Algorithm for the Induction Motor Drive. – IEEE International Electric Machines and Drives Conference, 2003, vol. 2, rp. 965–970, DOI: 10.1109/IEMDC.2003.1210351.
5. Azer P., Bilgin B., Emadi A. Comprehensive Analysis and Optimized Control of Torque Ripple and Power Factor in a Three-Phase Mutually Coupled Switched Reluctance Motor with Sinusoidal Current Excitation. – IEEE Transactions on Power Electronics, 2021, vol. 36, No. 2, pp. 7150–7164, DOI: 10.1109/TPEL.2020.3038741.
6. Aksamentov D.N. Vestnik Ivanovskogo gosudarstvennogo energeticheskogo universiteta – in Russ. (Bulletin of the Ivanovo State Power Engineering University), 2022, No. 2, pp. 47–57.
7. Korytov M.S., Shcherbakov V.S. Sistemy. Metody. Tehnologii – in Russ. (Systems. Methods. Technologies), 2016, No. 3 (31), pp. 63–67.
8. Sinyukov A.V. et al. Izvestiya vysshih uchebnyh zavedeniy. Problemy energetiki – in Russ. (News of Higher Educational Institutions. Energy Problems), 2024, vol. 26, No. 3, pp. 33–49.
9. Korytov M.S., Shcherbakov V.S., Shershneva E.O. Vestnik SibADI – in Russ. (Vestnik SibADI), 2017, No. 1 (53), pp. 12–19.
10. Sorensen K. et al. A Multi-Operational-Mode Anti-Sway and Positioning Control for an Industrial Bridge Crane. – 17th World Congress the International Federation of Automatic Control, 2008, r. 881–888, DOI: 10.3182/20080706-5-KR-1001.3834.
11. Sagdatullin A.M. Matematicheskie metody v tehnologiyah i tehnike – in Russ. (Mathematical Methods in Technology and Engi-neering), 2022, No. 10, pp. 81–84.
12. Belov M.P., Lan’ N.V. Izvestiya SPbGETU «LETI» – in Russ. (Izvestiya SPbETU «LETI»), 2021, No. 3, pp. 65–72.
13. Buyankin V.M. Tendentsii razvitiya nauki i obrazovaniya – in Russ. (Trends in the Development of Science and Education), 2020, No. 60-2, pp. 8–13.
14. Belov A.M., Belov M.P. Mezhdunarodnaya konferentsiya po myagkim vychisleniyam i izmereniyam – in Russ. (International Conference on Soft Computing and Measurement), 2022, vol. 1, pp. 91–94.
15. Yuxiang N.I.U., Hui L.I., Feiyang L.I.U. A Loss-aware Continuous Hopfield Neural Network (CHNN)-based Mapping Algorithm in Optical Network-on-Chip (ONoC). – 20th International Conference on Optical Communications and Networks (ICOCN), 2022, DOI: 10.1109/ICOCN55511.2022.9901288