Persistent Current Switches for Control of the 1.5 T MRI Magnetic System
Abstract
The currently achieved level of technology development around the world makes it possible to construct superconducting (SC) magnetic systems with a helium-free cooling system that does not require replenishing it with liquid helium throughout the entire service life. A magnetic resonance imaging (MRI) with a 1.5 T magnetic system that operates in vacuum under helium-free cooling conditions is being developed in Russia. The article presents the design of a superconducting switch, commonly known as a persistent current switch (PCS), for controlling the MRI magnetic system during current input/output. The PCS operates, like the entire magnetic system, under helium-free cooling conditions. To optimize the PCS design and study its unsteady operating modes, a numerical model based on the finite element method has been developed, which solves the unsteady heat conduction equation. Two PCS operating modes are considered: standard current input or output and fast current output. The PCS winding temperature variations during its operation is presented. The mechanical stresses arising in the cooled PCS predicted by the finite element method are presented. The PCS experimental samples that meet the technical requirements for the 1.5 T MRI magnetic system are presented.
References
2. Wang Y. et al. Design, Construction and Performance Testing of a 1.5 T Cryogen-Free Low-Temperature Superconductor Whole-Body MRI Magnet. – Superconductor Science and Technology, 2023, vol. 36, DOI: 10.1088/1361-6668/acb467.
3. Bagdinov A. et al. Performance Test of 1.5 T Cryogen-Free Orthopedic MRI Magnet. – IEEE Transactions on Applied Superconductivity, 2018, vol. 28, No. 3, DOI: 10.1109/TASC.2017.2784402.
4. Baig T. et al. Conceptual Designs of Conduction Cooled MgB2 Magnets for 1.5 and 3.0 T Full Body MRI Systems. – Superconductor Science and Technology, 2017, vol. 30, DOI: 10.1088/1361-6668/aa609b.
5. Высоцкий В.С. и др. Исследования сверхпроводящих ключей перемычек. – Труды ФИАН, 1980, т. 121, c. 76–82.
6. Высоцкий В.С., Карасик В.Р., Конюхов А.А. Критические токи и тепловые свойства сверхпроводящих ключей-перемычек. – Труды ФИАН, 1984, т. 150, c. 57–70.
7. Vysotsky V.S. et al. Persistent Mode Switches and Automatic Power Supplies for Autonomous Superconducting Magnets. – Advances in Cryogenic Engineering, 1996, vol. 41, pp. 1077–1086, DOI: 10.1007/978-1-4613-0373-2_137.
8. Уилсон М.Н. Сверхпроводящие магниты. М.: Мир, 1986, 405 с.
9. Dorri B., Laskaris E. Persistent Superconducting Switch for Cryogen-Free MR Magnets. – IEEE Transactions on Applied Superconductivity, 2018, vol. 5, No. 2, pp. 177–180, DOI: 10.1109/77.402518.
10. Wang Q. et al. Conduction-cooled Superconducting Magnet with Persistent Current Switch for Gyrotron Application. - IEEE Transactions on Applied Superconductivity, 2011, vol. 21, No. 3, pp. 2237-2240, DOI: 10.1109/TASC.2010.2081965.
11. Design and Development of Conduction Cooled MgB2 Magnets for 1.5 and 3.0T Full Body MRI Systems [Электрон. ресурс], URL: 2LO3-06_Matt_Rindfleisch_Room_1.pdf - Yandex Documents (дата обращения 14.02.2025).
12. Абдюханов И.М. и др. Композитные технические сверхпроводники. – Атомная энергия, 2015, т. 119, вып.5, с. 260–265.
13. Potanina L.V. et al. Recent Progress of Low Temperature Superconducting Materials at Bochvar Institute. – Physica C: Superconductivity, 2003, vol. 386, pp. 390–393, DOI: 10.1016/S0921-4534(02)02210-4.
14. Новицкий Л.А., Кожевников И.Г. Теплофизические свойства материалов при низких температурах. М.: Машиностроение, 1975, 216 с.
15. Гуревич А.В., Минц Р.Г., Рахманов А.Л. Физика композитных сверхпроводников. М.: Наука, 1987, 240 с.
#
1. Johnstone A. et al. Development of a 1.5 Tesla Whole-Body MRI Magnet with a Very Low Helium Inventory. – 25th International Conference on Magnet Technology, 2017.
2. Wang Y. et al. Design, Construction and Performance Testing of a 1.5 T Cryogen-Free Low-Temperature Superconductor Whole-Body MRI Magnet. – Superconductor Science and Technology, 2023, vol. 36, DOI: 10.1088/1361-6668/acb467.
3. Bagdinov A. et al. Performance Test of 1.5 T Cryogen-Free Ortho-pedic MRI Magnet. – IEEE Transactions on Applied Superconductivity, 2018, vol. 28, No. 3, DOI: 10.1109/TASC.2017.2784402.
4. Baig T. et al. Conceptual Designs of Conduction Cooled MgB2 Magnets for 1.5 and 3.0 T Full Body MRI Systems. – Superconductor Science and Technology, 2017, vol. 30, DOI: 10.1088/1361-6668/aa609b.
5. Vysotsky V.S. et al. Trudy FIAN – in Russ. (Proceedings of the FIAN), 1980, vol. 121, pp. 76–82.
6. Vysotsky V.S., Karasik V.R., Konyuhov A.A. Trudy FIAN – in Russ. (Proceedings of the FIAN), 1984, vol. 150, pp. 57–70.
7. Vysotsky V.S. et al. Persistent Mode Switches and Automatic Power Supplies for Autonomous Superconducting Magnets. – Advances in Cryogenic Engineering, 1996, vol. 41, pp. 1077–1086, DOI: 10.1007/978-1-4613-0373-2_137.
8. Uilson M.N. Sverhprovodyashchie magnity (Superconducting Magnets). M.: Mir, 1986, 405 p.
9. Dorri B., Laskaris E. Persistent Superconducting Switch for Cryogen-Free MR Magnets. – IEEE Transactions on Applied Superconductivity, 2018, vol. 5, No. 2, pp. 177–180, DOI: 10.1109/77.402518.
10. Wang Q. et al. Conduction-cooled Superconducting Magnet with Persistent Current Switch for Gyrotron Application. - IEEE Transactions on Applied Superconductivity, 2011, vol. 21, No. 3, pp. 2237-2240, DOI: 10.1109/TASC.2010.2081965.
11. Design and Development of Conduction Cooled MgB2 Magnets for 1.5 and 3.0T Full Body MRI Systems [Electron. resource], URL: 2LO3-06_Matt_Rindfleisch_Room_1.pdf - Yandex Documents (Access on 14.02.2025)..
12. Abdyuhanov I.М. et al. Atomnaya energiya. – in Russ. (Nuc-lear Energy), 2015, vol. 119, iss.5, pp. 260–265.
13. Potanina L.V. et al. Recent Progress of Low Temperature Superconducting Materials at Bochvar Institute. – Physica C: Superconductivity, 2003, vol. 386, pp. 390–393, DOI: 10.1016/S0921-4534(02)02210-4.
14. Novitskiy L.A., Kozhevnikov I.G. Teplofizicheskie svoystva materialov pri nizkih temperaturah (Thermophysical Properties of Materials at Low Temperatures). M.: Mashinostroenie, 1975, 216 p.
15. Gurevich A.V., Mints R.G., Rahmanov A.L. Fizika kom-pozitnyh sverhprovodnikov (Physics of Composite Superconductors). M.: Nauka, 1987, 240 p