Investigation of a Radiation-Resistant Induction Motor with Ring Stator Windings (By way of discussion)

  • Ol’ga V. TIHONOVA
  • Sergey L. KULAKOV
  • Igor’ V. MALYGIN
  • Anatoliy T. PLASTUN
Keywords: magnetic field, induction motor, digital model, prototype

Abstract

The article addresses the development of a special-purpose motor designed to operate under the conditions of elevated temperature and radiation. The design of a multiphase induction motor armature having ring windings with ceramic insulation is considered. It is proposed to use the armature a new type for electric machines with a capacity of up to 20 kW. Unlike machines of the conventional design, the rotating magnetic field in the machine of a new type is produced using a specially arranged magnetic system. The presented armature design makes it possible to place the stator coils in assembling the magnetic system without damaging or deforming them, and the use of ceramic insulation will help increase the motor service life. The problem of how to produce a rotating magnetic field and distribute it in a magnetic system is considered. A prototype induction motor with ring windings has been designed and manufactured on the basis of a serially produced motor for general industrial use. At the first stage of the research, a digital experiment was conducted, the results of which were verified at the second stage using the prototype field tests.

Author Biographies

Ol’ga V. TIHONOVA

(Ural Federal University Named After the First President of Russia B.N. Yeltsin, Regional Subdivision of LLC «Engineering Center «Ruselprom», Yekaterinburg, Russia) – Docent of the Electrical Engineering Dept.; Engineer, Cand. Sci. (Eng.).

Sergey L. KULAKOV

(Regional Subdivision of LLC «Engineering Center «Ruselprom», Yekaterinburg, Russia) – Head of the Calculated-Analytical Dept.

Igor’ V. MALYGIN

(Ural Federal University Named After the First President of Russia B.N. Yeltsin, Ekaterinburg, Russia) – Docent of the Electrical Engineering Dept., Cand. Sci. (Eng.).

Anatoliy T. PLASTUN

(Ural Federal University named after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia) – Professor of the Electrical Engineering Dept., Dr. Sci. (Eng.), Professor

References

1. Шаповаленко В.В. Реализация замкнутого ядерного топливного цикла в России. – Энергетические установки и технологии, 2022, № 1, с. 38–42.
2. Першуков В.А. Тихомиров Г.В. Замкнутый ядерный топливный цикл. – Энергетический вестник, 2023, № 28, с. 88–95.
3. Энергетическая стратегия Российской Федерации на период до 2035 года (Утв. распоряжением Правительства РФ от 9 июня 2020 г. № 1523-р).
4. СХК в 2026 году начнет строительство модуля переработки ОЯТ опытно-демонстрационного энергокомплекса БРЕСТ-ОД-300 [Электрон. ресурс], URL: https://www.atomic-energy.ru/news/2024/06/13/146663 (дата обращения 12.10.24).
5. Guo J. et al. Hypocrystalline Ceramic Aerogels for Thermal Insulation at Extreme Conditions. – Nature, 2022, No. 606, pp. 909–916, DOI: 10.1038/s41586-022-04784-0.
6. Selema A., Ibrahim M.N., Sergeant P. Electrical Machines Winding Technology: Latest Advancements for Transportation Electrification. – Machines, 2022, vol. 10, No. 7, DOI: 10.3390/machines10070563.
7. Биржин А.П. Серебрянников С.В. Производство современных материалов для изоляции электрических машин. – Электричество, 2023, № 8, с. 54–59.
8. Gayfutdinov A. et al. Radiation-Resistant Valve-Inductor-Type Motor as a Part of Technological Installation for Recycling Nuclear Industrial Waste. – Applied Mechanics and Materials, 2014, vol. 698, pp. 111–115, DOI: 10.4028/www.scientific.net/AMM.698.111.
9. Beketov A.R. et al. Designing and Testing a System of Controlling a Switched Reluctance Motor with Ceramic Insulation, Using No Pickups in Control and Communications. – International Siberian Conference on Control and Communications (SIBCON), 2015, DOI: 10.1109/SIBCON.2015.7147149.
10. Меньшатов А.М., Саитов С.Р. Анализ опыта использования керамических композиционных материалов для создания сопловых аппаратов турбин. – IX Национальная научно-практическая конференция, посвященная 55-летию КГЭУ «Приборостроение и автоматизированный электропривод в топливно-энергетическом комплексе и жилищно-коммунальном хозяйстве», 2024, с. 361–363.
11. Обабков Н.В. и др. Получение термостойкой керамики ZRO2-Y2-O3, армированной волокном. – Вестник концерна ПВО «Алмаз-Антей», 2021, № 8, с. 52–57.
12. Li Y. Design and Optimization of Hybrid-Excited Claw-Pole Machine for Vehicle. – IEEE Transactions on Applied Superconductivity, 2021, vol. 31, No. 8, DOI: 10.1109/TASC.2021.3094433.
13. Boldea I., Tutelea L.N., Popa A.A. Claw Pole Synchronous Motors/Generators (CP-SMs/Gs) Design and Control: Recent Progress. – IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, vol. 10, No. 4, 2022, pp. 4556–4564, DOI: 10.1109/JESTPE.2021.3125044.
14. Cao Y. et al. Optimization Design and Performance Evaluation of a Hybrid Excitation Claw Pole Machine. – Processes, 2022, vol. 10, No. 3, DOI: 10.3390/pr10030541.
15. Пат. RU 2121207 C1. Якорь многофазной электрической машины / А.Т. Пластун, 1998.
16. Косимов Б.И. Применение метода конечных элементов для электромагнитного анализа крупногабаритного электродвигателя привода пильгерстана. – Электротехнические и информационные комплексы и системы, 2020, № 2, с. 13–27.
17. Ma Z. Analysis of Squirrel Cage Induction Machine Based on the Magductance Modulator. – IEEE Transactions on Industrial Electronics, 2024, vol. 71, No. 12, pp. 15457–15466, DOI: 10.1109/TIE.2024.3392998.
18. Исмагилов Ф.Р. и др. Электромагнитный и тепловой анализ электрических машин из композитных материалов. – Вестник МЭИ, 2020, № 2, с. 52–61.
19. Попов С.А. и др. Методика расчета предварительных геометрических параметров гибридной электрической машины-генератора. – Научные труды Кубанского государственного технологического университета, 2022, № 1, с. 50–57.
20. Рева Ю.В. Методика расчета обмотки статора, размеров паза статора и числа проводников в пазу электродвигателей погружных электрических машин. – Природные и техногенные риски (физико-математические и прикладные аспекты), 2024, № 1, с. 24–30.
21. Захаров А.В. и др. Применение технологии цифровых двойников при разработке тяговых асинхронных электродвигателей. – Электротехника, 2022, № 4, с. 26–33.
22. Diab H., Amara Y., Barakat G. End-Effects Modeling in an Axial Field Flux Focusing Magnetic Gear using a Quasi-3D Reluctance Network Model. – IEEE International Conference on Electrical Machines (ICEM), 2022, pp. 83–88, DOI: 10.1109/ICEM51905.2022.9910932.
23. Kim K.I., Kim K.K. Field of Excitation of the Linear Induction Motor with a Chain Stator Winding. – International Scientific Siberian Transport Forum TransSiberia, 2021, pp. 726–734, DOI: 10.1007/978-3-030-96380-4_79.
24. Appadurai M., Fantin Irudaya Raj E., Venkadeshwaran K. Finite Element Design and Thermal Analysis of an Induction Motor Used for a Hydraulic Pumping System. – Materialstoday: Proceedings, 2021, vol. 45, pp. 7100–7106, DOI: 10.1016/j.matpr.2021.01.944.
25. Филиппов Д.М., Шуйский А.А. Оценка потерь на вихревые токи в магнитной системе электрической машины осевого потока. – XIX Международная конференция «Электротехника, электротехнологии, электротехнические материалы и компоненты», 2022, с. 256–260.
26. Nagel J.R. Fast Finite-Difference Calculation of Eddy Currents in Thin Metal Sheets. – Applied Computational Electromagnetics Society Journal, 2018, vol. 33, No. 6, pp. 575–584.
27. Kuczmann M. Numerical Analysis of Eddy Current Field in Laminated Media. – Pollack Periodica, 2018, vol. 13, No. 2, pp. 3–14, DOI: 10.1556/606.2018.13.2.1.
#
1. Shapovalenko V.V. Energeticheskie ustanovki i tehnologii – in Russ. (Energy Installations and Technologies), 2022, No. 1, pp. 38–42.
2. Pershukov V.A. Energeticheskiy vestnik – in Russ. (Energy Bulletin), 2023, No. 28, pp. 88–95.
3. Energeticheskaya strategiya Rossiyskoy Federatsii na period do 2035 goda (Utv. rasporyazheniem Pravitel'stva RF ot 9 iyunya 2020 g. No. 1523-r) (Energy Strategy of the Russian Federation up to 2035 (Approved by the Order of the Government of the Russian Federation of June 9, 2020 No. 1523-p)).
4. SHK v 2026 godu nachnet stroitel’stvo modulya pererabotki OYaT opytno-demonstratsionnogo energokompleksa BREST-OD-300 (MCC Will Start Construction of the SNF Reprocessing Module of the BREST-OD-300 Pilot Demonstration Power Complex in 2026) [Electron. resource], URL: https://www.atomic-energy.ru/news/2024/06/13/146663 (Access on 12.10.24).
5. Guo J. et al. Hypocrystalline Ceramic Aerogels for Thermal Insulation at Extreme Conditions. – Nature, 2022, No. 606, pp. 909–916, DOI: 10.1038/s41586-022-04784-0.
6. Selema A., Ibrahim M.N., Sergeant P. Electrical Machines Winding Technology: Latest Advancements for Transportation Electrification. – Machines, 2022, vol. 10, No. 7, DOI: 10.3390/ma-chines10070563.
7. Birzhin A.P. Elektrichestvo – in Russ. (Electricity), 2023, No. 8, pp. 54–59.
8. Gayfutdinov A. et al. Radiation-Resistant Valve-Inductor-Type Motor as a Part of Technological Installation for Recycling Nuclear Industrial Waste. – Applied Mechanics and Materials, 2014, vol. 698, pp. 111–115, DOI: 10.4028/www.scientific.net/AMM.698.111.
9. Beketov A.R. et al. Designing and Testing a System of Controlling a Switched Reluctance Motor with Ceramic Insulation, Using No Pickups in Control and Communications. – International Siberian Conference on Control and Communications (SIBCON), 2015, DOI: 10.1109/SIBCON.2015.7147149.
10. Men’shatov A.M., Saitov S.R. IX Natsional’naya nauchno-prakticheskaya konferentsiya, posvyashchennaya 55-letiyu KGEU «Priborostroenie i avtomatizirovannyy elektroprivod v toplivno-ener-geticheskom komplekse i zhilishchno-kommunal’nom hozyaystve» – in Russ. (IX National Scientific and Practical Conference Dedicated to the 55th Anniversary of KSEU “Instrumentation and Automated Electric Drive in Fuel-Energy Complex and Housing-Communal Services”), 2024, pp. 361–363.
11. Obabkov N.V. et al. Vestnik kontserna PVO «Almaz-Antey» – in Russ. (Bulletin of Almaz-Antey Air Defence Concern), 2021, No. 8, pp. 52–57.
12. Li Y. Design and Optimization of Hybrid-Excited Claw-Pole Machine for Vehicle. – IEEE Transactions on Applied Superconductivity, 2021, vol. 31, No. 8, DOI: 10.1109/TASC.2021.3094433.
13. Boldea I., Tutelea L.N., Popa A.A. Claw Pole Synchronous Motors/Generators (CP-SMs/Gs) Design and Control: Recent Progress. – IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, vol. 10, No. 4, 2022, pp. 4556–4564, DOI: 10.1109/JESTPE.2021.3125044.
14. Cao Y. et al. Optimization Design and Performance Evaluation of a Hybrid Excitation Claw Pole Machine. – Processes, 2022, vol. 10, No. 3, DOI: 10.3390/pr10030541.
15. Pat. RU 2121207 C1. Yakor’ mnogofaznoy elektricheskoy mashiny (Anchor of Multiphase Electric Machine) / A.T. Plastun, 1998.
16. Kosimov B.I. Elektrotehnicheskie i informatsionnye kompleksy i sistemy – in Russ. (Electrical Engineering and Information Complexes and Systems), 2020, No. 2, pp. 13–27.
17. Ma Z. Analysis of Squirrel Cage Induction Machine Based on the Magductance Modulator. – IEEE Transactions on Industrial Electronics, 2024, vol. 71, No. 12, pp. 15457–15466, DOI: 10.1109/TIE.2024.3392998.
18. Ismagilov F.R. et al. Vestnik MEI – in Russ. (Bulletin of MPEI), 2020, No. 2, pp. 52–61.
19. Popov S.A. et al. Nauchnye trudy Kubanskogo gosudarstven-nogo tehnologicheskogo universiteta – in Russ. (Scientific Proceedings of Kuban State Technological University), 2022, No. 1, pp. 50–57.
20. Reva Yu.V. Prirodnye i tehnogennye riski (fiziko-matema-ticheskie i prikladnye aspekty) – in Russ. (Natural and Anthropogenic Risks (Physical, Mathematical and Applied Aspects)), 2024, No. 1, pp. 24–30.
21. Zaharov A.V. et al. Elektrotehnika – in Russ. (Electrical Engineering), 2022, No. 4, pp. 26–33.
22. Diab H., Amara Y., Barakat G. End-Effects Modeling in an Axial Field Flux Focusing Magnetic Gear using a Quasi-3D Reluctance Network Model. – IEEE International Conference on Electrical Machines (ICEM), 2022, pp. 83–88, DOI: 10.1109/ICEM51905.2022.9910932.
23. Kim K.I., Kim K.K. Field of Excitation of the Linear Induction Motor with a Chain Stator Winding. – International Scientific Siberian Transport Forum TransSiberia, 2021, pp. 726–734, DOI: 10.1007/978-3-030-96380-4_79.
24. Appadurai M., Fantin Irudaya Raj E., Venkadeshwaran K. Finite Element Design and Thermal Analysis of an Induction Motor Used for a Hydraulic Pumping System. – Materialstoday: Proceedings, 2021, vol. 45, pp. 7100–7106, DOI: 10.1016/j.matpr.2021.01.944.
25. Filippov D.M., Shuyskiy A.A. XIX Mezhdunarodnaya konferentsiya «Elektrotehnika, elektrotehnologii, elektrotehnicheskie materialy i komponenty» – in Russ. (XIX International Conference on Electromechanics, Electrotechnology, Electromaterials and Components), 2022, pp. 256–260.
26. Nagel J.R. Fast Finite-Difference Calculation of Eddy Currents in Thin Metal Sheets. – Applied Computational Electromagnetics Society Journal, 2018, vol. 33, No. 6, pp. 575–584.
27. Kuczmann M. Numerical Analysis of Eddy Current Field in Laminated Media. – Pollack Periodica, 2018, vol. 13, No. 2, pp. 3–14, DOI: 10.1556/606.2018.13.2.1
Published
2025-02-27
Section
Article