Basic Principles of Design of 2G HTS Power Cables

  • Sergey S. FETISOV
  • Vasily V. ZUBKO
Keywords: second-generation HTS cable, triaxial HTS cable, development of HTS cables, HTS cable modeling

Abstract

Power cables made of high temperature superconductors (HTS) are considered to be the most advanced application field of superconductivity in the electric power industry. Cables made of the first-generation (1G) HTS wires have already been put in use in electrical grids in a number of countries around the world. Active efforts are presently being taken to develop power cables made of second-generation HTS wires
(2G or Coated Conductors). The basic principles for designing coaxial HTS power cables have been known since 1990s. New methods for developing compact 2G HTS AC power cables are considered. Methods to optimize the design of these cable aimed to ensure uniform distribution of the current among the cable layers and the technology for manufacturing such cables are presented. The test program and a setup for testing HTS cable models are described. Some problems pertinent to the development of small-diameter 2G HTS power cables are discussed. Examples of the development, manufacture, and test results of two basic designs of compact coaxial HTS cables, namely, a single-phase (a cable core and a shield) and a three-phase (so-called triaxial with three coaxial phases) versions, are given.

Author Biographies

Sergey S. FETISOV

(JSC "All-Russian Scientific, Design, Development and Research Institute of Tech-nology for Cable Industry", Moscow, Russia) – Deputy Head of the Department, Chief of Labolatory, Cand. Sci. (Eng.)

Vasily V. ZUBKO

доктор техн. наук, главный научный сотрудник ОАО «Всероссийский научно-исследовательский проектно-конструкторский и технологический институт кабельной промышленности».

References

1. Doukas D.I. Superconducting Transmission Systems: Review, Classification and Technology Readiness Assessment. – IEEE Transaction on Applied Superconductivity, 2019, vol. 29, No. 5, p. 5401205.
2. Malozemoff A.P., Yuan J., Rey C.M. High-temperature super-conducting (HTS) AC cables for power grid applications. – Super-conductors in the power grid: Materials and Applications. ed. by C. Rey, 2015, No. 65, pp. 133–188, doi:10.1016/B978-1-78242-029-3.00005-4.
3. Lee C., Son H., Won Y., et al. Progress of the first commercial project of high-temperature superconducting cables by KEPCO in Korea. – Superconductor Science and Technology, 2020, vol. 33, No. 4, p. 044006.
4. Sytnikov V.E., Dolgosheev P.I., Svalov G.G, Polyakova N.V., Belij D.I. Influence of the multilayer HTS-cable conductor design on the current distribution. – Physica C, 1998, vol. 310, pp. 387–391.
5. Sytnikov V.E., Svalov G.G., Peshkov I.B. Studies of current distribution in large-scale superconducting cables influenced by internal and external magnetic fields. – Cryogenics, 1989, vol. 29, No. 10, pp. 971–974.
6. Hamajima T., Alamgir A., Harada N., Tsuda M., Ono M., Takano H. Analysis of current distribution in a large superconductor. – Cryogenics, 2000, vol. 40, No. 11, pp. 729–736.
7. Daumling M. A model for the current distribution and ac losses in superconducting multi-layer power cables. – Cryogenics, 1999, vol. 39, pp. 759–767.
8. Zhu J., Bao X., Guo L., Xia Z., Qiu M., Yuan W. Optimal design of current sharing in transmission conductors of a 110 kV/3 kA cold dielectric superconducting cable consisted of YBCO tapes. – IEEE Transaction on Applied Superconductivity, 2013, vol. 23, No. 3, p. 5402505.
9. Sytnikov V.E., Polyakova N.V., Vysotsky V.S. Current distribution and voltage-current relation in multi-layered LTS and HTS power cable core: A review. – Physica C, 2004, vol. 401, pp. 47–56.
10. Sjostrom M., Dutoit B., Duron J. Equivalent Circuit Model for Superconductors. – IEEE Transaction on Applied Superconductivity, 2003, vol.13, No. 2, 1890–1893.
11. Kruger Olsen S., Trieholt C., et al. Loss and Inductance Investigations in a 4-layer Superconducting Prototype Cable Conduc-tor. – IEEE Transaction on Applied Superconductivity, 1999, vol. 9, No. 2, pp. 833–836.
12. Официальный сайт ANSYS Multiphysics [Электрон. ресурс] http://www.ansys.com/ (дата обращения 21.03.2021).
13. Demko J.A., Sauers I., James D.R., et al. Triaxial HTS Cable for the AEP Bixby Project. – IEEE Transaction on Applied Superconductivity, 2007, vol. 17, No. 2, pp. 2047–2050.
14. Stemmle M., Merschel F., Noe M., Hobl A. AmpaCity-Advanced superconducting medium voltage system for urban area power supply. – Proc. IEEE PES T&D Conf. Exp., 2014, pp. 1–5.
15. Fetisov S., Zubko V., Zanegin S., Nosov A., Ryabov S., Vysotsky V. Study of the first Russian triaxial HTS cables prototypes. – IEEE Transaction on Applied Superconductivity, 2017, vol. 27, No. 4, p. 5400305.
16. Fetisov S., Zubko V., Zanegin S., Nosov A., Vysotsky V. Numerical Simulation and Cold Test of a Compact 2G HTS Power Cable. – IEEE Transaction on Applied Superconductivity, 2018, vol. 28, No. 4, p. 5400905.
17. Fetisov S., Zubko V., Zanegin S., Vysotsky V. Cold test and numerical analysis of the compact 2G HTS power cable. – IOP Conf. Ser.: Mater. Sci. and Eng., 2019, vol. 502, p. 012179.
18. Высоцкий В.В., Занегин С.Ю., Зубко В.В., Фетисов С.С. Оптимизация конструкции компактных силовых кабелей на основе высокотемпературных сверхпроводящих проводников. – Кабели и провода, 2018, № 6, c. 32–37.
19. Volkov E.P., Vysotsky V.S., Firsov V.P. First Russian long length HTS power cable. – Physica C, 2012, vol. 482, pp. 87–91.
20. Sytnikov V.E., Vysotsky V.S., Rychagov A.V., et al. 30 m HTS Power Cable Development and Witness Sample Test. – IEEE Transaction on Applied Superconductivity, 2009, vol.19, No. 3, pp.1702–1705.
21. Vysotsky V., Nosov A., Fetisov S. et al. AC Loss and Other Researches with 5 m HTS Model Cables. – IEEE Transaction on Applied Superconductivity, 2011, vol. 21, No. 3, pp. 1001–1004.
22. Zubko V., Nosov A., Polyakova N., Fetisov S., Vysotsky V. Hysteresis Loss in Power Cables Made of 2G HTS Wires with NiW Alloy Substrate. – IEEE Transaction on Applied Superconductivity, 2011, vol. 21, No. 3, pp. 988–990.
23. Fetisov S., Nosov A., Zubko V., et al. First Model Power Cables Made of Russian 2G HTS Wires and their Test Results. – J. Phys: Conf. Ser., 2014, vol. 507, No. 3, p. 03206305.
24. Официальный сайт SuperOx [Электрон. ресурс] http://www.superox.ru/ (дата обращения 01.04.2021).
25. Высоцкий В.С., Занегин С.Ю., Зубко В.В., Фетисов С.С., Носов А.А. Триаксиальный кабель на основе высокотемпературных сверхпроводников с двумя повивами на фазу. – Кабели и провода, 2020, № 3, с. 3–10.
26. Fetisov S., Zubko V., Zanegin S., Nosov A., Vysotsky V. Optimization and Cold Test of a Triaxial 2G HTS Power Cable with High Current Capacity. – IEEE Transaction on Applied Superconductivity, 2021, vol. 31, No. 5, p. 5400104.
#
1. Doukas D.I. Superconducting Transmission Systems: Review, Classification and Technology Readiness Assessment. – IEEE Transaction on Applied Superconductivity, 2019, vol. 29, No. 5, p. 5401205.
2. Malozemoff A.P., Yuan J., Rey C.M. High-temperature superconducting (HTS) AC cables for power grid applications. – Superconductors in the power grid: Materials and Applications. ed. by C. Rey, 2015, No. 65, pp. 133–188, doi:10.1016/B978-1-78242-029-3.00005-4.
3. Lee C., Son H., Won Y., et al. Progress of the first commercial project of high-temperature superconducting cables by KEPCO in Korea. – Superconductor Science and Technology, 2020, vol. 33, No. 4, p. 044006.
4. Sytnikov V.E., Dolgosheev P.I., Svalov G.G, Polyakova N.V., Belij D.I. Influence of the multilayer HTS-cable conductor design on the current distribution. – Physica C, 1998, vol. 310, pp. 387–391.
5. Sytnikov V.E., Svalov G.G., Peshkov I.B. Studies of current distribution in large-scale superconducting cables influenced by internal and external magnetic fields. – Cryogenics, 1989, vol. 29, No. 10, pp. 971–974.
6. Hamajima T., Alamgir A., Harada N., Tsuda M., Ono M., Takano H. Analysis of current distribution in a large superconductor. – Cryogenics, 2000, vol. 40, No. 11, pp. 729–736.
7. Daumling M. A model for the current distribution and ac losses in superconducting multi-layer power cables. – Cryogenics, 1999, vol. 39, pp. 759–767.
8. Zhu J., Bao X., Guo L., Xia Z., Qiu M., Yuan W. Optimal design of current sharing in transmission conductors of a 110 kV/3 kA cold dielectric superconducting cable consisted of YBCO tapes. – IEEE Transaction on Applied Superconductivity, 2013, vol. 23, No. 3, p. 5402505.
9. Sytnikov V.E., Polyakova N.V., Vysotsky V.S. Current distribution and voltage-current relation in multi-layered LTS and HTS power cable core: A review. – Physica C, 2004, vol. 401, pp. 47–56.
10. Sjostrom M., Dutoit B., Duron J. Equivalent Circuit Model for Superconductors. – IEEE Transaction on Applied Superconductivity, 2003, vol.13, No. 2, 1890–1893.
11. Kruger Olsen S., Trieholt C., et al. Loss and Inductance Investigations in a 4-layer Superconducting Prototype Cable Conductor. – IEEE Transaction on Applied Superconductivity, 1999, vol. 9, No. 2, pp. 833–836.
12. ANSYS Multiphysics [Electron Resource] http://www.ansys.com/ (Date of appeal 21.03.2021).
13. Demko J.A., Sauers I., James D.R., et al. Triaxial HTS Cable for the AEP Bixby Project. – IEEE Transaction on Applied Superconductivity, 2007, vol. 17, No. 2, pp. 2047–2050.
14. Stemmle M., Merschel F., Noe M., Hobl A. AmpaCity-Advanced superconducting medium voltage system for urban area power supply. – Proc. IEEE PES T&D Conf. Exp., 2014, pp. 1–5.
15. Fetisov S., Zubko V., Zanegin S., Nosov A., Ryabov S., Vysotsky V. Study of the first Russian triaxial HTS cables prototypes. – IEEE Transaction on Applied Superconductivity, 2017, vol. 27, No. 4, p. 5400305.
16. Fetisov S., Zubko V., Zanegin S., Nosov A., Vysotsky V. Numerical Simulation and Cold Test of a Compact 2G HTS Power Cable. – IEEE Transaction on Applied Superconductivity, 2018, vol. 28, No. 4, p. 5400905.
17. Fetisov S., Zubko V., Zanegin S., Vysotsky V. Cold test and numerical analysis of the compact 2G HTS power cable. – IOP Conf. Ser.: Mater. Sci. and Eng., 2019, vol. 502, p. 012179.
18. Vysotsky V.V., Zanegin S.Yu., Zubko V.V., Fetisov S.S. Kabeli i provoda – in Russ. (Cables and wires), 2018, No. 6, pp. 32–37.
19. Volkov E.P., Vysotsky V.S., Firsov V.P. First Russian long length HTS power cable. – Physica C, 2012, vol. 482, pp. 87–91.
20. Sytnikov V.E., Vysotsky V.S., Rychagov A.V., et al. 30 m HTS Power Cable Development and Witness Sample Test. – IEEE Transaction on Applied Superconductivity, 2009, vol.19, No. 3, pp.1702–1705.
21. Vysotsky V., Nosov A., Fetisov S. et al. AC Loss and Other Researches with 5 m HTS Model Cables. – IEEE Transaction on Applied Superconductivity, 2011, vol. 21, No. 3, pp. 1001–1004.
22. Zubko V., Nosov A., Polyakova N., Fetisov S., Vysotsky V. Hysteresis Loss in Power Cables Made of 2G HTS Wires with NiW Alloy Substrate. – IEEE Transaction on Applied Superconductivity, 2011, vol. 21, No. 3, pp. 988–990.
23. Fetisov S., Nosov A., Zubko V., et al. First Model Power Cables Made of Russian 2G HTS Wires and their Test Results. – J. Phys: Conf. Ser., 2014, vol. 507, No. 3, p. 03206305.
24. SuperOx [Electron Resource] http://www.superox.ru/ (Date of appeal 01.04.2021).
25. Vysotsky V.V., Zanegin S.Yu., Zubko V.V., Fetisov S.S., Nosov А.А. Kabeli i provoda – in Russ. (Cables and wires), 2020,
№ 3, с. 3–10.
26. Fetisov S., Zubko V., Zanegin S., Nosov A., Vysotsky V. Optimization and Cold Test of a Triaxial 2G HTS Power Cable with High Current Capacity. – IEEE Transaction on Applied Superconductivity, 2021, vol. 31, No. 5, p. 5400104.
Published
2021-03-27
Section
Article