Базовые технологии изготовления силовых кабелей на основе высокотемпературных сверхпроводников второго поколения

  • Сергей Сергеевич Фетисов
  • Василий Васильевич Зубко
Ключевые слова: ВТСП-кабель второго поколения, триаксиальный ВТСП-кабель, разработка ВТСП-кабелей, моделирование ВТСП-кабелей

Аннотация

Силовые кабели на основе высокотемпературных сверхпроводников (далее – ВТСП-кабели) считаются наиболее перспективным направлением применения сверхпроводимости в электроэнергетике. Кабели из высокотемпературных сверхпроводников первого поколения уже внедрены в электрические сети ряда стран мира. Силовые ВТСП-кабели второго поколения находятся в активной разработке. Основные принципы конструирования коаксиальных силовых ВТСП-кабелей известны с 1990-х гг. Статья посвящена новым методам разработки компактных силовых ВТСП-кабелей переменного тока второго поколения. Представлены методы оптимизации конструкции кабелей, обеспечивающие равномерное распределение тока между их повивами, и технология производства кабелей такой конструкции. Описаны программа испытаний и стенд для тестирования моделей ВТСП-кабелей. Рассмотрены проблемы разработки силовых ВТСП-кабелей второго поколения малых диаметров. Приведены примеры разработки, изготовления и результатов испытаний двух основных конструкций компактных коаксиальных ВТСП-кабелей: однофазного (жила кабеля и экран) и трехфазного (триаксиальный: с тремя коаксиальными фазами) исполнений.

Биографии авторов

Сергей Сергеевич Фетисов

кандидат техн. наук, зам. зав. отделения по науке, зав. лабораторией ОАО «Всероссийский научно-исследовательский проектно-конструкторский и технологический институт кабельной промышленности»

Василий Васильевич Зубко

доктор техн. наук, главный научный сотрудник ОАО «Всероссийский научно-исследовательский проектно-конструкторский и технологический институт кабельной промышленности».

Литература

1. Doukas D.I. Superconducting Transmission Systems: Review, Classification and Technology Readiness Assessment. – IEEE Transaction on Applied Superconductivity, 2019, vol. 29, No. 5, p. 5401205.
2. Malozemoff A.P., Yuan J., Rey C.M. High-temperature super-conducting (HTS) AC cables for power grid applications. – Super-conductors in the power grid: Materials and Applications. ed. by C. Rey, 2015, No. 65, pp. 133–188, doi:10.1016/B978-1-78242-029-3.00005-4.
3. Lee C., Son H., Won Y., et al. Progress of the first commercial project of high-temperature superconducting cables by KEPCO in Korea. – Superconductor Science and Technology, 2020, vol. 33, No. 4, p. 044006.
4. Sytnikov V.E., Dolgosheev P.I., Svalov G.G, Polyakova N.V., Belij D.I. Influence of the multilayer HTS-cable conductor design on the current distribution. – Physica C, 1998, vol. 310, pp. 387–391.
5. Sytnikov V.E., Svalov G.G., Peshkov I.B. Studies of current distribution in large-scale superconducting cables influenced by internal and external magnetic fields. – Cryogenics, 1989, vol. 29, No. 10, pp. 971–974.
6. Hamajima T., Alamgir A., Harada N., Tsuda M., Ono M., Takano H. Analysis of current distribution in a large superconductor. – Cryogenics, 2000, vol. 40, No. 11, pp. 729–736.
7. Daumling M. A model for the current distribution and ac losses in superconducting multi-layer power cables. – Cryogenics, 1999, vol. 39, pp. 759–767.
8. Zhu J., Bao X., Guo L., Xia Z., Qiu M., Yuan W. Optimal design of current sharing in transmission conductors of a 110 kV/3 kA cold dielectric superconducting cable consisted of YBCO tapes. – IEEE Transaction on Applied Superconductivity, 2013, vol. 23, No. 3, p. 5402505.
9. Sytnikov V.E., Polyakova N.V., Vysotsky V.S. Current distribution and voltage-current relation in multi-layered LTS and HTS power cable core: A review. – Physica C, 2004, vol. 401, pp. 47–56.
10. Sjostrom M., Dutoit B., Duron J. Equivalent Circuit Model for Superconductors. – IEEE Transaction on Applied Superconductivity, 2003, vol.13, No. 2, 1890–1893.
11. Kruger Olsen S., Trieholt C., et al. Loss and Inductance Investigations in a 4-layer Superconducting Prototype Cable Conduc-tor. – IEEE Transaction on Applied Superconductivity, 1999, vol. 9, No. 2, pp. 833–836.
12. Официальный сайт ANSYS Multiphysics [Электрон. ресурс] http://www.ansys.com/ (дата обращения 21.03.2021).
13. Demko J.A., Sauers I., James D.R., et al. Triaxial HTS Cable for the AEP Bixby Project. – IEEE Transaction on Applied Superconductivity, 2007, vol. 17, No. 2, pp. 2047–2050.
14. Stemmle M., Merschel F., Noe M., Hobl A. AmpaCity-Advanced superconducting medium voltage system for urban area power supply. – Proc. IEEE PES T&D Conf. Exp., 2014, pp. 1–5.
15. Fetisov S., Zubko V., Zanegin S., Nosov A., Ryabov S., Vysotsky V. Study of the first Russian triaxial HTS cables prototypes. – IEEE Transaction on Applied Superconductivity, 2017, vol. 27, No. 4, p. 5400305.
16. Fetisov S., Zubko V., Zanegin S., Nosov A., Vysotsky V. Numerical Simulation and Cold Test of a Compact 2G HTS Power Cable. – IEEE Transaction on Applied Superconductivity, 2018, vol. 28, No. 4, p. 5400905.
17. Fetisov S., Zubko V., Zanegin S., Vysotsky V. Cold test and numerical analysis of the compact 2G HTS power cable. – IOP Conf. Ser.: Mater. Sci. and Eng., 2019, vol. 502, p. 012179.
18. Высоцкий В.В., Занегин С.Ю., Зубко В.В., Фетисов С.С. Оптимизация конструкции компактных силовых кабелей на основе высокотемпературных сверхпроводящих проводников. – Кабели и провода, 2018, № 6, c. 32–37.
19. Volkov E.P., Vysotsky V.S., Firsov V.P. First Russian long length HTS power cable. – Physica C, 2012, vol. 482, pp. 87–91.
20. Sytnikov V.E., Vysotsky V.S., Rychagov A.V., et al. 30 m HTS Power Cable Development and Witness Sample Test. – IEEE Transaction on Applied Superconductivity, 2009, vol.19, No. 3, pp.1702–1705.
21. Vysotsky V., Nosov A., Fetisov S. et al. AC Loss and Other Researches with 5 m HTS Model Cables. – IEEE Transaction on Applied Superconductivity, 2011, vol. 21, No. 3, pp. 1001–1004.
22. Zubko V., Nosov A., Polyakova N., Fetisov S., Vysotsky V. Hysteresis Loss in Power Cables Made of 2G HTS Wires with NiW Alloy Substrate. – IEEE Transaction on Applied Superconductivity, 2011, vol. 21, No. 3, pp. 988–990.
23. Fetisov S., Nosov A., Zubko V., et al. First Model Power Cables Made of Russian 2G HTS Wires and their Test Results. – J. Phys: Conf. Ser., 2014, vol. 507, No. 3, p. 03206305.
24. Официальный сайт SuperOx [Электрон. ресурс] http://www.superox.ru/ (дата обращения 01.04.2021).
25. Высоцкий В.С., Занегин С.Ю., Зубко В.В., Фетисов С.С., Носов А.А. Триаксиальный кабель на основе высокотемпературных сверхпроводников с двумя повивами на фазу. – Кабели и провода, 2020, № 3, с. 3–10.
26. Fetisov S., Zubko V., Zanegin S., Nosov A., Vysotsky V. Optimization and Cold Test of a Triaxial 2G HTS Power Cable with High Current Capacity. – IEEE Transaction on Applied Superconductivity, 2021, vol. 31, No. 5, p. 5400104.
#
1. Doukas D.I. Superconducting Transmission Systems: Review, Classification and Technology Readiness Assessment. – IEEE Transaction on Applied Superconductivity, 2019, vol. 29, No. 5, p. 5401205.
2. Malozemoff A.P., Yuan J., Rey C.M. High-temperature superconducting (HTS) AC cables for power grid applications. – Superconductors in the power grid: Materials and Applications. ed. by C. Rey, 2015, No. 65, pp. 133–188, doi:10.1016/B978-1-78242-029-3.00005-4.
3. Lee C., Son H., Won Y., et al. Progress of the first commercial project of high-temperature superconducting cables by KEPCO in Korea. – Superconductor Science and Technology, 2020, vol. 33, No. 4, p. 044006.
4. Sytnikov V.E., Dolgosheev P.I., Svalov G.G, Polyakova N.V., Belij D.I. Influence of the multilayer HTS-cable conductor design on the current distribution. – Physica C, 1998, vol. 310, pp. 387–391.
5. Sytnikov V.E., Svalov G.G., Peshkov I.B. Studies of current distribution in large-scale superconducting cables influenced by internal and external magnetic fields. – Cryogenics, 1989, vol. 29, No. 10, pp. 971–974.
6. Hamajima T., Alamgir A., Harada N., Tsuda M., Ono M., Takano H. Analysis of current distribution in a large superconductor. – Cryogenics, 2000, vol. 40, No. 11, pp. 729–736.
7. Daumling M. A model for the current distribution and ac losses in superconducting multi-layer power cables. – Cryogenics, 1999, vol. 39, pp. 759–767.
8. Zhu J., Bao X., Guo L., Xia Z., Qiu M., Yuan W. Optimal design of current sharing in transmission conductors of a 110 kV/3 kA cold dielectric superconducting cable consisted of YBCO tapes. – IEEE Transaction on Applied Superconductivity, 2013, vol. 23, No. 3, p. 5402505.
9. Sytnikov V.E., Polyakova N.V., Vysotsky V.S. Current distribution and voltage-current relation in multi-layered LTS and HTS power cable core: A review. – Physica C, 2004, vol. 401, pp. 47–56.
10. Sjostrom M., Dutoit B., Duron J. Equivalent Circuit Model for Superconductors. – IEEE Transaction on Applied Superconductivity, 2003, vol.13, No. 2, 1890–1893.
11. Kruger Olsen S., Trieholt C., et al. Loss and Inductance Investigations in a 4-layer Superconducting Prototype Cable Conductor. – IEEE Transaction on Applied Superconductivity, 1999, vol. 9, No. 2, pp. 833–836.
12. ANSYS Multiphysics [Electron Resource] http://www.ansys.com/ (Date of appeal 21.03.2021).
13. Demko J.A., Sauers I., James D.R., et al. Triaxial HTS Cable for the AEP Bixby Project. – IEEE Transaction on Applied Superconductivity, 2007, vol. 17, No. 2, pp. 2047–2050.
14. Stemmle M., Merschel F., Noe M., Hobl A. AmpaCity-Advanced superconducting medium voltage system for urban area power supply. – Proc. IEEE PES T&D Conf. Exp., 2014, pp. 1–5.
15. Fetisov S., Zubko V., Zanegin S., Nosov A., Ryabov S., Vysotsky V. Study of the first Russian triaxial HTS cables prototypes. – IEEE Transaction on Applied Superconductivity, 2017, vol. 27, No. 4, p. 5400305.
16. Fetisov S., Zubko V., Zanegin S., Nosov A., Vysotsky V. Numerical Simulation and Cold Test of a Compact 2G HTS Power Cable. – IEEE Transaction on Applied Superconductivity, 2018, vol. 28, No. 4, p. 5400905.
17. Fetisov S., Zubko V., Zanegin S., Vysotsky V. Cold test and numerical analysis of the compact 2G HTS power cable. – IOP Conf. Ser.: Mater. Sci. and Eng., 2019, vol. 502, p. 012179.
18. Vysotsky V.V., Zanegin S.Yu., Zubko V.V., Fetisov S.S. Kabeli i provoda – in Russ. (Cables and wires), 2018, No. 6, pp. 32–37.
19. Volkov E.P., Vysotsky V.S., Firsov V.P. First Russian long length HTS power cable. – Physica C, 2012, vol. 482, pp. 87–91.
20. Sytnikov V.E., Vysotsky V.S., Rychagov A.V., et al. 30 m HTS Power Cable Development and Witness Sample Test. – IEEE Transaction on Applied Superconductivity, 2009, vol.19, No. 3, pp.1702–1705.
21. Vysotsky V., Nosov A., Fetisov S. et al. AC Loss and Other Researches with 5 m HTS Model Cables. – IEEE Transaction on Applied Superconductivity, 2011, vol. 21, No. 3, pp. 1001–1004.
22. Zubko V., Nosov A., Polyakova N., Fetisov S., Vysotsky V. Hysteresis Loss in Power Cables Made of 2G HTS Wires with NiW Alloy Substrate. – IEEE Transaction on Applied Superconductivity, 2011, vol. 21, No. 3, pp. 988–990.
23. Fetisov S., Nosov A., Zubko V., et al. First Model Power Cables Made of Russian 2G HTS Wires and their Test Results. – J. Phys: Conf. Ser., 2014, vol. 507, No. 3, p. 03206305.
24. SuperOx [Electron Resource] http://www.superox.ru/ (Date of appeal 01.04.2021).
25. Vysotsky V.V., Zanegin S.Yu., Zubko V.V., Fetisov S.S., Nosov А.А. Kabeli i provoda – in Russ. (Cables and wires), 2020,
№ 3, с. 3–10.
26. Fetisov S., Zubko V., Zanegin S., Nosov A., Vysotsky V. Optimization and Cold Test of a Triaxial 2G HTS Power Cable with High Current Capacity. – IEEE Transaction on Applied Superconductivity, 2021, vol. 31, No. 5, p. 5400104.
Опубликован
2021-03-27
Раздел
Статьи