On the Choice of Methods for Numerically Integrating the Equations of Transients in Electric Power Systems
Abstract
Algorithms for solving the system of differential-algebraic equations describing electromechanical transients in electric power systems are considered along with matters concerned with ensuring the reliability and required accuracy of the solution results. Classical explicit methods, methods for implicit numerical integration and simultaneous solution of differential-algebraic systems of equations are used to model dynamic processes in power systems. On the basis of the methods used, difference models of electric power system components are obtained. The equations of transients in electric power systems are written in a homogeneous coordinate basis with the use of nodal voltage equations. A comparative analysis of algorithms based on the explicit Runge-Kutta method and implicit methods of Euler, trapezoids, Euler with fitting coefficients is carried out. The analysis results have shown that in terms of stability and accuracy, the trapezoid method has the greatest advantages, which is not inferior to the 4th order Runge-Kutta method and allows calculations with a large integration step to be carried out. The effectiveness of the combined method is shown, in which the Euler method with fitting is used to solve the differential equations describing electromagnetic processes, and the trapezoid method is used to solve the equations of electromechanical motion.
References
2. Веников В.А. Переходные электромеханические процессы в электроэнергетических системах. М.: Высшая школа, 1985, 536 с.
3. Скворцов Л.М. Численное решение обыкновенных дифференциальных и дифференциально-алгебраических уравнений. М.: ДМК Пресс, 2018, 230 с.
4. Холл Дж., Уатт Дж. Современные численные методы решения обыкновенных дифференциальных уравнений. М.: Мир, 1979, 312 с.
5. Butcher J.C. Numerical Methods for Ordinary Differential Equations. Wiley, 2003, 440 p.
6. Jackiewicz Z. General linear methods for ordinary differential equations. Wiley, 2009, 504 p.
7. Федоренко Р.П. Введение в вычислительную физику. М.: Изд-во Моск. физ.-техн. ин-та, 1994, 528 с.
8. Галанин М.П., Ходжаева С.Р. Методы решения жестких обыкновенных дифференциальных уравнений. Результаты тестовых расчетов. – Препринты ИПМ им. М.В. Келдыша, 2013, № 98, 29 с. [Электрон. ресурс], URL: http://library.keldysh.ru/pre-print.asp?id=2013-98 (дата обращения 22.11.2021).
9. Хайрер Э., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Жесткие и дифференциально-алгебраические задачи. М.: Мир, 1999, 685 с.
10. Фазылов Х.Ф., Шарипов У.Б. Моделирование динамических процессов в электроэнергетических системах. – Известия АН СССР. Энергетика и транспорт, 1985, № 3, с. 24–32.
11. Фалейчик Б.В. Одношаговые методы численного решения задачи Коши. Минск: БГУ, 2010, 42 с.
12. Новиков Е.А. Явные методы для жестких систем. Новосибирск: Наука, 1997, 195 с.
13. Скворцов Л.М. Явные многошаговые методы с расширенными областями устойчивости. – Журнал вычислительной математики и математической физики, 2010, т. 50, № 9, с. 1539–1549.
14. Чучалин А.И. Математическое моделирование в электромеханике. Томск: Изд. ТПУ, 2000, 150 с.
15. Аристов А.В., Бурулько Л.К., Паюк Л.А. Математическое моделирование в электромеханике. Томск: Изд. ТПУ, 2005, 155 с.
16. Копылов И.П. Математическое моделирование электрических машин. М.: Высшая школа, 2001, 327 с.
17. Фазылов Х.Ф., Насыров Т.Х. Основы теории и расчета установившихся режимов электрических систем. Ташкент: Фан, 1985, 76 с.
#
1. Rakitskiy Yu.V., Ustinov S.M., Chernorutskiy I.G. Chislennye metody resheniya zhestkih sistem (Numerical Methods for Solving Rigid Systems). М.: Nauka, 1979, 208 p.
2. Venikov V.А. Perekhodnye elektromekhanicheskie protsessy v elektroenergeticheskih sistemah (Transient Electromechanical Processes in Electric Power Systems). М.: Vysshaya shkola, 1985, 536 p.
3. Skvortsov L.М. Chislennoe reshenie obyknovennyh differentsial'nyh i differentsial'no-algebraicheskih uravneniy (Numerical Solution of Ordinary Differential and Differential-Algebraic Equations). М.: DMK Press, 2018, 230 p.
4. Hall J., Watt J. Sovremennye chislennye metody resheniya obyknovennyh differentsial'nyh uravneniy (Modern Numerical Methods for Solving Ordinary Differential Equations). М.: Mir, 1979, 312 p.
5. Butcher J.C. Numerical Methods for Ordinary Differential Equations. Wiley, 2003, 440 p.
6. Jackiewicz Z. General linear methods for ordinary differential equations. Wiley, 2009, 504 p.
7. Fedorenko R.P. Vvedenie v vychislitel'nuyu fiziku (Introduction to Computational Physics). М.: Izd-vo Mosk. fiz.-tekhn. in-ta, 1994, 528 p.
8. Galanin M.P., Hodzhaeva S.R. Preprinty IPM im. M.V. Keldysha. – in Russ. (Preprints of IPM n. a. M.V.Keldysh), 2013, No. 98, 29 p. [Electron. resource], URL: http://library.keldysh.ru/preprint.asp?id=2013-98 (Date of appeal 22.11.2021).
9. Hayrer E., Vanner G. Reshenie obyknovennyh differentsial'nyh uravneniy. Zhestkie i differentsial'no-algebraicheskie zadachi (Solution of Ordinary Differential Equations. Rigid and Differential-Algebraic Problems). М.: Мir, 1999, 685 p.
10. Fazylov H.F., Sharipov U.B. Izvestiya AN SSSR. Energetika i transport – in Russ. (Izvestia of the USSR Academy of Sciences. Energy and Transport), 1985, No. 3, pp. 24–32.
11. Faleychik B.V. Odnoshagovye metody chislennogo resheniya zadachi Koshi (One-Step Methods for Numerical Solution of the Cauchy Problem). Minsk: BGU, 2010, 42 p.
12. Novikov Е.А. Yavnye metody dlya zhestkih sistem (Explicit Methods for Rigid Systems). Novosibirsk: Nauka, 1997, 195 p.
13. Skvortsov L.М. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki – in Russ. (Journal of Computational Mathematics and Mathematical Physics), 2010, vol. 50, No. 9, pp. 1539–1549.
14. Chuchalin A.I. Matematicheskoe modelirovanie v elektromekhanike (Mathematical Modeling in Electromechanics). Tomsk: Izd. TPU, 2000, 150 p.
15. Aristov A.V., Burul'ko L.K., Payuk L.А. Matematicheskoe modelirovanie v elektromekhanike (Mathematical Modeling in Elec-tromechanics). Tomsk: Izd. TPU, 2005, 155 p.
16. Kopylov I.P. Matematicheskoe modelirovanie elektricheskih mashin (Mathematical Modeling of Electric Machines). М.: Vysshaya shkola, 2001, 327 p.
17. Fazylov H.F., Nasyrov T.H. Osnovy teorii i rascheta ustanovivshihsya rezhimov elektricheskih sistem (Fundamentals of Theory and Calculation of Steady-State Modes of Electrical Systems). Tashkent: Fan, 1985, 76 p.