Investigation of a double frequency application for high frequency longitudinal welding of cladded pipes

  • W. Ebel
  • E. Baake
  • M. Krol
  • A. Nikanorov
Keywords: high frequency induction-welding, longitudinal welding, pipes, cladded pipes, frequency of current

Abstract

This article is dealing with a research on high frequency longitudinal induction welding of cladded pipes with use of simultaneous double frequency. Solutions are proposed to reach the required temperature distribution at the welding edge for the cladding composite of S355 and Alloy 625 with single and simultaneous double frequency. An advanced consideration of magnetic and other material properties was performed to simulate the dominating physical effects of high frequency (HF) welding. The background of use and advantages of simultaneous double frequency are presented. In the context of the research, a correlation for welding speed, frequency and temperature distribution with industrial relevance was found for the cladded pipe welding.

Author Biographies

W. Ebel

Ebel W — Leibniz University, Hannover, Germany

E. Baake

Baake E. — Leibniz University, Hannover, German

M. Krol

Kroll M. — Technical University, Khemnitz, German

A. Nikanorov

Nikanorov A — Leibniz University, Hannover, Germany

References

B. Nacke and E. Baake, Induktives Бгшдгшеп. Essen: Vulkan Verlag GmbH, 2014.

B. Grande and O. Waerstad, “Consistent quality in high-frequency tube and pipe welding,” 2011.

X. Meng, G. Qin, Y. Zhang, B. Fu, and Z. Zou, “High speed TIG-MAG к arc welding of mild steel plate,” J Mater Process Technol, vol. 214, no. 11, pp. 2417-2424, 2014.

J. Sabbaghzadeh, M. Azizi, and M.J. Torkamany, “Numerical and experimental investigation of seam welding with a pulsed laser,” Opt Laser Technol, vol. 40, no. 2, pp. 289-296, 2008.

A. Nikanorov, E. Baake, H. Brauer, and C. Weil, “Approaches for Numerical Simulation of High Frequency Tube Welding Process,” in Modelling for Electromagnetic Processing, 2014, no. 1, pp. 445-450.

W. Ebel, M. Kroll, A. Nikanorov, and E. Baake, “Nummerische Simulation des HF-^ngsnahtschwei.Hens,” Prozesswдrme, vol. 2, 2018.

E. Le Guen, M. Carin, R. Fabbro, F. Coste, and P. Le Masson, “3D heat transfer model of hybrid laser Nd:Yag-MAG welding of S355 steel and experimental validation,” Int J Heat Mass Transf, vol. 54, no. 7-8, pp. 1313-1322, 2011.

Corrosion Materials, “Alloy 625,” 2008. [Online]. Available: www.corrosionmaterials.com.

U. Peil and M. Wichers, “Schwei.Hen unter B etriebsbeanspruchung - W erkstoffkennwerte zur Temperaturfeldberechnung fbr einen S 355 J2 G3,” Stahlbau, vol. 74, no. 11. pp. 249-257, 2005.

M. Woite GmbH, “2.4856,” 2017. [Online]. Available: http://woite-edelstahl.info/24856de.html.

J. Winczek and E. Gawrocska, “The modeling of heat affected zone (HAZ) in submerged arc welding (SAW) surfacing steel element,” Metalurgija, 2016.

J. Fischer and H. Moser, “Die nachbildung von Magnetisierungskurven durch einfache algebraische oder transzendente Funktionen,” Arch fbr Elektrotechnik, vol. 42, no. 5, pp. 286-299, 1956.

C. Nurenberg, “Bestimmung elektromagnetischer Materialeigenschaften fbr Rohrstahle mit Hilfe experimenteller Untersuchungen und numerischer Simulation.,” Leibniz University Hannover, 2017.

K. Lim and M. Hammond, “Universal Loss Chart for the Calculation of Eddy Current Losses in Thick Steel Plates,” Proc Inst Electr Eng, vol. 117 (4), pp. 857-864, 1970.

B. Nacke, “Ein Verfahren zur numerischen Simulation induktiver Erwдrmungsprozesse und dessen technische Anwendung.. University Hannover,” Leibniz University Hannover, 1987.
#
B. Nacke and E. Baake, Induktives Бгшдгшеп. Essen: Vulkan Verlag GmbH, 2014.

B. Grande and O. Waerstad, “Consistent quality in high-frequency tube and pipe welding,” 2011.

X. Meng, G. Qin, Y. Zhang, B. Fu, and Z. Zou, “High speed TIG-MAG к arc welding of mild steel plate,” J Mater Process Technol, vol. 214, no. 11, pp. 2417-2424, 2014.

J. Sabbaghzadeh, M. Azizi, and M.J. Torkamany, “Numerical and experimental investigation of seam welding with a pulsed laser,” Opt Laser Technol, vol. 40, no. 2, pp. 289-296, 2008.

A. Nikanorov, E. Baake, H. Brauer, and C. Weil, “Approaches for Numerical Simulation of High Frequency Tube Welding Process,” in Modelling for Electromagnetic Processing, 2014, no. 1, pp. 445-450.

W. Ebel, M. Kroll, A. Nikanorov, and E. Baake, “Nummerische Simulation des HF-^ngsnahtschwei.Hens,” Prozesswдrme, vol. 2, 2018.

E. Le Guen, M. Carin, R. Fabbro, F. Coste, and P. Le Masson, “3D heat transfer model of hybrid laser Nd:Yag-MAG welding of S355 steel and experimental validation,” Int J Heat Mass Transf, vol. 54, no. 7-8, pp. 1313-1322, 2011.

Corrosion Materials, “Alloy 625,” 2008. [Online]. Available: www.corrosionmaterials.com.

U. Peil and M. Wichers, “Schwei.Hen unter B etriebsbeanspruchung - W erkstoffkennwerte zur Temperaturfeldberechnung fbr einen S 355 J2 G3,” Stahlbau, vol. 74, no. 11. pp. 249-257, 2005.

M. Woite GmbH, “2.4856,” 2017. [Online]. Available: http://woite-edelstahl.info/24856de.html.

J. Winczek and E. Gawrocska, “The modeling of heat affected zone (HAZ) in submerged arc welding (SAW) surfacing steel element,” Metalurgija, 2016.

J. Fischer and H. Moser, “Die nachbildung von Magnetisierungskurven durch einfache algebraische oder transzendente Funktionen,” Arch fbr Elektrotechnik, vol. 42, no. 5, pp. 286-299, 1956.

C. Nurenberg, “Bestimmung elektromagnetischer Materialeigenschaften fbr Rohrstahle mit Hilfe experimenteller Untersuchungen und numerischer Simulation.,” Leibniz University Hannover, 2017.

K. Lim and M. Hammond, “Universal Loss Chart for the Calculation of Eddy Current Losses in Thick Steel Plates,” Proc Inst Electr Eng, vol. 117 (4), pp. 857-864, 1970.

B. Nacke, “Ein Verfahren zur numerischen Simulation induktiver Erwдrmungsprozesse und dessen technische Anwendung.. University Hannover,” Leibniz University Hannover, 1987.
Published
2019-03-20
Section
Article