Исследование индукционной продольной сварки плакированных труб с одновременным применением двух частот тока

  • В. Эбел
  • Э. Бааке
  • М. Кроль
  • А. Никаноров
Ключевые слова: высокочастотная индукционная сварка, продольная сварка, трубы, плакированные трубы, частота

Аннотация

Статья посвящена исследованию высокочастотной продольной индукционной сварки труб в обо­лочке с использованием одновременно двух частот. Предлагаются решения c целью достижения требуемого распределения температуры на сварочной кромке для композита оболочки из S355 и сплава 625 при одной частоте тока и одновременно двух частотах. Предварительное рассмот­рение магнитных и других свойств материалов было выполнено для моделирования физических эф­фектов высокочастотной (ВЧ) сварки. Представленообоснование и показаны преимущества ис­пользования одновременно двух частот. При исследовании была найдена зависимость между ско­ростью сварки, значением частоты и распределением температуры для сварки труб с оболочкой, даны рекомендациидля промышленного применения.

Биографии авторов

В. Эбел

Эбел В. — Университет им. Лейбница (Ганновер, Германия).

Э. Бааке

Бааке Э. — Университет им. Лейбница (Ганновер, Германия).

М. Кроль

Кроль М. — Технический университет (Хемниц, Германия).

А. Никаноров

Никаноров А. — Университет им. Лейбница (Ганновер, Германия)

Литература

B. Nacke and E. Baake, Induktives Бгшдгшеп. Essen: Vulkan Verlag GmbH, 2014.

B. Grande and O. Waerstad, “Consistent quality in high-frequency tube and pipe welding,” 2011.

X. Meng, G. Qin, Y. Zhang, B. Fu, and Z. Zou, “High speed TIG-MAG к arc welding of mild steel plate,” J Mater Process Technol, vol. 214, no. 11, pp. 2417-2424, 2014.

J. Sabbaghzadeh, M. Azizi, and M.J. Torkamany, “Numerical and experimental investigation of seam welding with a pulsed laser,” Opt Laser Technol, vol. 40, no. 2, pp. 289-296, 2008.

A. Nikanorov, E. Baake, H. Brauer, and C. Weil, “Approaches for Numerical Simulation of High Frequency Tube Welding Process,” in Modelling for Electromagnetic Processing, 2014, no. 1, pp. 445-450.

W. Ebel, M. Kroll, A. Nikanorov, and E. Baake, “Nummerische Simulation des HF-^ngsnahtschwei.Hens,” Prozesswдrme, vol. 2, 2018.

E. Le Guen, M. Carin, R. Fabbro, F. Coste, and P. Le Masson, “3D heat transfer model of hybrid laser Nd:Yag-MAG welding of S355 steel and experimental validation,” Int J Heat Mass Transf, vol. 54, no. 7-8, pp. 1313-1322, 2011.

Corrosion Materials, “Alloy 625,” 2008. [Online]. Available: www.corrosionmaterials.com.

U. Peil and M. Wichers, “Schwei.Hen unter B etriebsbeanspruchung - W erkstoffkennwerte zur Temperaturfeldberechnung fbr einen S 355 J2 G3,” Stahlbau, vol. 74, no. 11. pp. 249-257, 2005.

M. Woite GmbH, “2.4856,” 2017. [Online]. Available: http://woite-edelstahl.info/24856de.html.

J. Winczek and E. Gawrocska, “The modeling of heat affected zone (HAZ) in submerged arc welding (SAW) surfacing steel element,” Metalurgija, 2016.

J. Fischer and H. Moser, “Die nachbildung von Magnetisierungskurven durch einfache algebraische oder transzendente Funktionen,” Arch fbr Elektrotechnik, vol. 42, no. 5, pp. 286-299, 1956.

C. Nurenberg, “Bestimmung elektromagnetischer Materialeigenschaften fbr Rohrstahle mit Hilfe experimenteller Untersuchungen und numerischer Simulation.,” Leibniz University Hannover, 2017.

K. Lim and M. Hammond, “Universal Loss Chart for the Calculation of Eddy Current Losses in Thick Steel Plates,” Proc Inst Electr Eng, vol. 117 (4), pp. 857-864, 1970.

B. Nacke, “Ein Verfahren zur numerischen Simulation induktiver Erwдrmungsprozesse und dessen technische Anwendung.. University Hannover,” Leibniz University Hannover, 1987.
#
B. Nacke and E. Baake, Induktives Бгшдгшеп. Essen: Vulkan Verlag GmbH, 2014.

B. Grande and O. Waerstad, “Consistent quality in high-frequency tube and pipe welding,” 2011.

X. Meng, G. Qin, Y. Zhang, B. Fu, and Z. Zou, “High speed TIG-MAG к arc welding of mild steel plate,” J Mater Process Technol, vol. 214, no. 11, pp. 2417-2424, 2014.

J. Sabbaghzadeh, M. Azizi, and M.J. Torkamany, “Numerical and experimental investigation of seam welding with a pulsed laser,” Opt Laser Technol, vol. 40, no. 2, pp. 289-296, 2008.

A. Nikanorov, E. Baake, H. Brauer, and C. Weil, “Approaches for Numerical Simulation of High Frequency Tube Welding Process,” in Modelling for Electromagnetic Processing, 2014, no. 1, pp. 445-450.

W. Ebel, M. Kroll, A. Nikanorov, and E. Baake, “Nummerische Simulation des HF-^ngsnahtschwei.Hens,” Prozesswдrme, vol. 2, 2018.

E. Le Guen, M. Carin, R. Fabbro, F. Coste, and P. Le Masson, “3D heat transfer model of hybrid laser Nd:Yag-MAG welding of S355 steel and experimental validation,” Int J Heat Mass Transf, vol. 54, no. 7-8, pp. 1313-1322, 2011.

Corrosion Materials, “Alloy 625,” 2008. [Online]. Available: www.corrosionmaterials.com.

U. Peil and M. Wichers, “Schwei.Hen unter B etriebsbeanspruchung - W erkstoffkennwerte zur Temperaturfeldberechnung fbr einen S 355 J2 G3,” Stahlbau, vol. 74, no. 11. pp. 249-257, 2005.

M. Woite GmbH, “2.4856,” 2017. [Online]. Available: http://woite-edelstahl.info/24856de.html.

J. Winczek and E. Gawrocska, “The modeling of heat affected zone (HAZ) in submerged arc welding (SAW) surfacing steel element,” Metalurgija, 2016.

J. Fischer and H. Moser, “Die nachbildung von Magnetisierungskurven durch einfache algebraische oder transzendente Funktionen,” Arch fbr Elektrotechnik, vol. 42, no. 5, pp. 286-299, 1956.

C. Nurenberg, “Bestimmung elektromagnetischer Materialeigenschaften fbr Rohrstahle mit Hilfe experimenteller Untersuchungen und numerischer Simulation.,” Leibniz University Hannover, 2017.

K. Lim and M. Hammond, “Universal Loss Chart for the Calculation of Eddy Current Losses in Thick Steel Plates,” Proc Inst Electr Eng, vol. 117 (4), pp. 857-864, 1970.

B. Nacke, “Ein Verfahren zur numerischen Simulation induktiver Erwдrmungsprozesse und dessen technische Anwendung.. University Hannover,” Leibniz University Hannover, 1987.
Опубликован
2019-03-20
Раздел
Статьи