Modeling the Operation Modes of a Grid Windmill Equipped with a Permanent Magnet Synchronous Generator

  • Amer RAMADAN
  • Victor V. ELISTRATOV
Keywords: windmill, synchronous generator, permanent magnets, operation mode, subsystem, wind velocity, control, rotation frequency

Abstract

Windmills (WMs) equipped with permanent magnet synchronous generators (PMSGs) are widely used in modern wind power engineering applications. A grid WM equipped with a PMSG uses power converters for converting all electric power generated in the entire variation ranges of wind velocity and generator rotation frequency. The power converter connected on the generator side controls the generator’s active power supplied to the grid by means of the maximal power point tracing (MPPT) algorithm, and the power converter connected on the grid side controls the DC voltage and reactive power. For analyzing and studying the operation modes of a grid WM equipped with a PMSG, and for estimating the possibilities of controlling the generator rotation frequency under the conditions of variable wind velocity and generator rotation frequency with the optimal level of power supplied to the grid, all electric power components of the WM are modeled on a computer using available and newly developed systems in the MATLAB environment. The developed control algorithms implement control of the generator stator current zero direct component for monitoring the power converter connected to the generator, control of wind wheel blades position, and oriented control with respect to the grid voltage phasor for monitoring the power converter connected to the grid. The modeling results have shown that the model of the considered WM equipped with a PMSG developed in the MATLAB environment is able to perform full-scale power conversion from 0.068 p.u. to 0.985 p.u. with an average error of 2.58% with the wind velocity varying from its initial value equal to 5 m/s to the nominal value equal to 12 m/s and makes it possible to control the generator rotation frequency in the full range from 0.409 p.u. to 0.995p.u. with a percentage error of 0.91%. Thus, the model of the considered WM equipped with a PMSG developed in the MATLAB environment is adequate and can be used for reliably modeling the operation modes of a WM equipped with a PMSG.

Author Biographies

Amer RAMADAN

RAMADAN Amer (Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia) — PhD Student

Victor V. ELISTRATOV

ELISTRATOV Victor V. (Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia) — Professor, Dr. Sci. (Eng.)

References

International Renewable Energy Agency (IRENA). — Renewable energy statistics 2018 [Электрон. ресурс] https://www.irena.Org/-/media/Files/IRENA/Agency/Publication/2 018/Jul/IRENA_Renewable_Energy_Statistics_2018.pdf (дата об­ращения 01.01.2019).

Renewable energy policy network for the 21st century (REN21). - Renewables 2018 Global Status Report [Электрон. ре­сурс] http://www.ren21.net/wp-content/uploads/2018/06/17-8652_ GSR2018_FullReport_web_final_.pdf (дата обращения 01.01.2019).

Rekioua D. Wind Power Electric Systems: Modeling, Simulation and Control. Springer-Verlag London, 2014, 202 p.

Рамадан А., Елистратов В.В. Моделирование и управле­ние сетевой ветроэнергетической установкой с асинхронным генератором двойного питания. — Научно-технические ведомости СПбПУ. Естественные и инженерные науки, 2018, т. 24. № 3. с. 22—37.

Рамадан А., Елистратов В.В. Компьютерное моделирова­ние сетевой ветроэнергетической установки с асинхронным ге­нератором. — Электричество, 2017. № 12, с. 4—11.

Елистратов В.В. Возобновляемая энергетика. 3-е изд., доп. — СПб.: Изд-во Политехн. ун-та. 2016. — 424 с.

Beainy A., Maatouk C., Moubayed N., Kaddah F. Comparison of different types of generator for wind energy conversion system topologies. — 3rd International Conf. on Renewable Energies for Developing Countries (REDEC), 2016, pp. 1—6.

Chowdhury M.M., Haque M.E., Mahmud M.A. et al. Control of IPM synchronous generator based direct drive wind turbine with MTPA trajectory and maximum power extraction. — IEEE PESGM 2016 : Proc. of the IEEE Power and Energy Society General Meeting, IEEE, Piscataway, N.J., pp. 1—5.

Wu B., Lang Y., Zargari N., Kouro S. Power Conversion and Control ofWind Energy Systems, Wiley-IEEE Press, 2011, 480 p.

Рамадан А., Денисов Р.С. Моделирование автономных энергокомплексов на основе ВЭУ для изолированных потреби­телей в среде MATLAB Simulink. — Вестник аграрной науки Дона, 2017, т. 3, № 39, с. 11-20.

Slah H., Mehdi D. and Lassaad S. Advanced Control of a PMSG Wind Turbine. International Journal of Modern Nonlinear Theory and Application, 2016, Vol. 5, No. 1, pp.1-10.

Ankush Kumar M., Menghal P.M., Jaya Laxmi A. et al. SVPWM based converter for PMSG based wind energy conversion system. 4th International Conference on Eco-friendly Computing and Communication Systems. Procedia Computer Science, 2015, vol. 70, pp. 676-682.

Alaa Eldien M.M. Hassan, Mahmoud A. Sayed, Essam E.M. Mohamed. Three-phase Matrix Converter Applied to Wind Energy Conversion System for Wind Speed Estimation, International Journal of Sustainable and Green Energy, 2015, vol. 4, No. 3, pp. 117-124.

Syahputra, Rodi & Wiyagi, Rama & Sudarisman. Performance analysis of a wind turbine with permanent magnet synchronous generator. — Journal of Theoretical and Applied Information Technology, 2017, vol. 95, No. 9, pp. 1950-1957.

Ben Ali R., Schulte H., Mami A. Modeling and simulation of a small wind turbine system based on PMSG generator, Evolving and Adaptive Intelligent Systems (EAIS), Ljubljana, 2017, pp. 1—6.

Wu Y.K., Hu Y.L., Chiang M.H. Development of a PMSG-based wind turbine modeling by ADAMS, FAST and MATLAB. - Energy Procedia, 2016, vol. 100, pp. 122-126.

Suyampulingam As. & Subbiah, V. PMSG based wind turbine system connected to DC micro-grid with MPPT control. International Journal of Pure and Applied Mathematics, 2018, vol. 118, No. 10, pp. 99-105.

Ben Smida M., Sakly A. Pitch Angle Control for Variable Speed Wind Turbines. - Journal of Renewable Energy and Sustainable Development (RESD), 2015, vol. 1, No. 1, pp. 81-88.

Echchaachoual Amina, El Hani Soumia, Hammouch Ahmed. Comparison of three estimators used in a sensorless MPPT strategy for a wind energy conversion chain based on a PMSG. Przeglad Elektrotechniczny, 2018, vol. 1, No. 3, pp. 20-24.

Geetha Sai Sree K., Sunilkumar M., Prasanna Lakshmi Ch. Control of a Grid Connected Wind Energy Conversion System By using Sliding Mode Control (SMC). - International Journal of Engineering and Advanced Technology (IJEAT), 2017, vol. 7, iss.2, pp. 83-88.

Alencar D.B.D., Afonso C.D.M., Oliveira R.L.D., Rodriguez J.M., Leite J., Filho J.R. Different models for forecasting wind power generation: Case study. Energies, 2017, No. 10, 1976.
#
International Renewable Energy Agency [Electron. resurs] https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2 018/Jul/IRENA_Renewable_Energy_Statistics_2018.pdf , (date of appeal 01.01.2019).

Renewable energy policy network for the 21st century (REN21) [Elektron. resurs] http://www.ren21.net/wp-content/ uploads/2018/06/17-8652_GSR2018_FullReport_web_final_.pdf (data of appeal 01.01.2019).

Rekioua D. Wind Power Electric Systems. — Modeling, Simulation and Control. London, Springer-Verlag, 2014, 202 p.

Ramadan A., Elistratov V.V. Nauchno-tekhn. vedomosti SPbPU — in Russ. (St. Petersburg polytechnic university journal Natural and Engineering Sciences), 2018, vol. 24, No. 03, pp. 22—37. DOI: 10.18721/JEST.240302.

Ramadan A., Elistratov V.V. Elektrichestvo — in Russ. (Electricity), 2017, No. 12, ss. 4—11.

Elistratov V.V. Vozobnovlyayemaya energetika. — in Russ. (Proceeded in energy), 3rd izd. — SPb.: Publ. Politechn. Institute, 2016, 424 p.

Beainy A., Maatouk C., Moubayed N., Kaddah F. Comparison of different types of generator for wind energy conversion system topologies. 3rd International Conference on Renewable Energies for Developing Countries (REDEC), 2016, pp. 1—6.

Chowdhury M.M., Haque M.E., Mahmud M.A., et al. Control of IPM synchronous generator based direct drive wind turbine with MTPA trajectory and maximum power extraction. — Proc. of the IEEE Power and Energy Society General Meeting, Piscataway, N.J., pp. 1—5.

Wu B., Lang Y., Zargari N., Kouro S. Power Conversion and Control ofWind Energy Systems. Wiley-IEEE Press, 2011, 480 p.

Ramadan A., Denisov R.S. Vestnik agrarnoy nauki Dona — in Russ. (Bulletin of agrarian science of Don), 2017, vol. 3, No. 39. pp. 11-20.

Slah H., Mehdi D., Lassaad S. Advanced Control of a PMSG Wind Turbine. International Journal of Modern Nonlinear Theory and Application, 2016, vol. 5, No. 1, pp. 1-10.

Ankush Kumar M., Menghal P.M., Jaya Laxmi A. et al. SVPWM based converter for PMSG based wind energy conversion system. 4th International Conference on Eco-friendly Computing and Communication Systems. Procedia Computer Science, 2015, vol. 70, pp. 676-682.

Alaa Eldien M.M. Hassan, Mahmoud A. Sayed, Essam E.M. Mohamed. Three-phase Matrix Converter Applied to Wind Energy Conversion System for Wind Speed Estimation, International Journal of Sustainable and Green Energy. 2015, vol. 4, No. 3, pp. 117-124.

Syahputra, Rodi & Wiyagi, Rama & Sudarisman. Performance analysis of a wind turbine with permanent magnet synchronous generator. Journal of Theoretical and Applied Information Technology, 2017, vol. 95, No. 9, pp. 1950-1957.

Ben Ali R., Schulte H., Mami A. Modeling and simulation of a small wind turbine system based on PMSG generator, Evolving and Adaptive Intelligent Systems (EAIS), Ljubljana, 2017, pp. 1-6.

Wu Y.K., Hu Y.L., Chiang M.H. Development of a PMSG-based wind turbine modeling by ADAMS, FAST and MATLAB, Energy Procedia, 2016, vol. 100, pp. 122-126.

Suyampulingam As & Subbiah V. PMSG based wind turbine system connected to DC micro-grid with MPPT control. International Journal of Pure and Applied Mathematics. 2018, vol. 118, No. 10, pp. 99-105.

Ben Smida M., Sakly A. Pitch Angle Control for Variable Speed Wind Turbines, Journal of Renewable Energy and Sustainable Development (RESD), 2015, vol. 1, No. 1, pp. 81-88,

Echchaachoual Amina, El Hani Soumia, Hammouch Ahmed. Comparison of three estimators used in a sensorless MPPT strategy for a wind energy conversion chain based on a PMSG. Przeglad Elektrotechniczny, 2018, vol. 1, No. 3, pp. 20-24.

Geetha Sai Sree K., Sunilkumar M., Prasanna Lakshmi Ch. Control of a Grid Connected Wind Energy Conversion System By using Sliding Mode Control (SMC). - International Journal of Engineering and Advanced Technology (IJEAT), 2017, vol. 7, iss.2, pp. 83-88.

Alencar D.B.D., Afonso C.D.M., Oliveira R.L.D., Rodmguez J.M., Leite J., Filho J.R. Different models for forecasting wind power generation: Case study. - Energies, 2017, No. 10, 1976.
Published
2019-07-23
Section
Article